BinaryClassificationMetrics#
- class pyspark.mllib.evaluation.BinaryClassificationMetrics(scoreAndLabels)[source]#
Evaluator for binary classification.
New in version 1.4.0.
- Parameters
- scoreAndLabels
pyspark.RDD
an RDD of score, label and optional weight.
- scoreAndLabels
Examples
>>> scoreAndLabels = sc.parallelize([ ... (0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)], 2) >>> metrics = BinaryClassificationMetrics(scoreAndLabels) >>> metrics.areaUnderROC 0.70... >>> metrics.areaUnderPR 0.83... >>> metrics.unpersist() >>> scoreAndLabelsWithOptWeight = sc.parallelize([ ... (0.1, 0.0, 1.0), (0.1, 1.0, 0.4), (0.4, 0.0, 0.2), (0.6, 0.0, 0.6), (0.6, 1.0, 0.9), ... (0.6, 1.0, 0.5), (0.8, 1.0, 0.7)], 2) >>> metrics = BinaryClassificationMetrics(scoreAndLabelsWithOptWeight) >>> metrics.areaUnderROC 0.79... >>> metrics.areaUnderPR 0.88...
Methods
call
(name, *a)Call method of java_model
Unpersists intermediate RDDs used in the computation.
Attributes
Computes the area under the precision-recall curve.
Computes the area under the receiver operating characteristic (ROC) curve.
Methods Documentation
- call(name, *a)#
Call method of java_model
Attributes Documentation
- areaUnderPR#
Computes the area under the precision-recall curve.
New in version 1.4.0.
- areaUnderROC#
Computes the area under the receiver operating characteristic (ROC) curve.
New in version 1.4.0.