Internet Engineering Task Force (IETF) J. Schaad

Request for Comments: 8551 August Cellars
Obsoletes: 5751 B. Ramsdell
Category: Standards Track Brute Squad Labs, Inc.
ISSN: 2070-1721 S. Turner
sn3rd

April 2019

Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
Message Specification

Abstract

This document defines Secure/Multipurpose Internet Mail Extensions
(S/MIME) version 4.0. S/MIME provides a consistent way to send and
receive secure MIME data. Digital signatures provide authentication,
message integrity, and non-repudiation with proof of origin.
Encryption provides data confidentiality. Compression can be used to
reduce data size. This document obsoletes RFC 5751.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8551.

Schaad, et al. Standards Track [Page 1]



RFC 8551 S/MIME 4.0 Message Specification April 2019

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Schaad, et al. Standards Track [Page 2]



RFC 8551

Table of Contents

N

w W

w W

Schaad,

PR RR R R

NN DNDDN

l—‘ONl\)[\)\lo'\l\)Nl\)U'I[\)l\)l\)Nl\)»bwl\)l—‘O\IO\U'beu)Nl—‘

O JO WWWUudWwwwbdhwwww

[S2XE 6]

L7
7.

N

o ;

B DD D

7.

N = ==

S/MIME 4.0 Message Specification April 2019
Introduction c e e 5
Specification Overv1ew 5
Definitions . . . 6
Conventions Used in ThlS Document 7
Compatibility with Prior Practice of S/MIME 8
Changes from S/MIME v3 to S/MIME v3.l1 9
Changes from S/MIME v3.1 to S/MIME v3.2 9
Changes for S/MIME v4.0 11
Options 12
DlgestAlgorlthmIdent1f1er 12
SignatureAlgorithmIdentifier 12
KeyEncryptionAlgorithmIdentifier 13
General Syntax 13
.1. Data Content Type 14
2. SignedData Content Type 14
3. EnvelopedData Content Type 14
4. AuthEnvelopedData Content Type 14
5. CompressedData Content Type 14
Attributes and the SignerInfo Type 15
.1. Signing Time Attribute 15
.2. SMIMECapabilities Attribute 16
.3. Encryption Key Preference Attrlbute 17
SignerIdentifier SignerInfo Type 19
ContentEncryptionAlgorithmIdentifier 19
1. Deciding Which Encryption Method to Use 19
.2. Choosing Weak Encryption 21
3. Multiple Recipients 21
reating S/MIME Messages e e e e e e 21
Preparing the MIME Entity for Slgnlng, Enveloping, or
Compressing . 22
1. Canonicalization 23
2. Transfer Encoding 24
3. Transfer Encoding for Slgnlng U31ng multlpart/31gned 25
4. Sample Canonical MIME Entity 25
The application/pkcs7-mime Media Type 26
.1. The name and filename Parameters 27
.2. The smime-type Parameter . 28
Creating an Enveloped-Only Message 29
Creating an Authenticated Enveloped- Only Message 30
Creating a Signed-Only Message . 31
.1. Choosing a Format for Signed- Only Messages 32
.2. Signing Using application/pkcs7-mime with SlgnedData 32
.3. Signing Using the multipart/signed Format 33
Creating a Compressed-Only Message 36
Multiple Operations .. 37
Creating a Certificate Management Message 38
al. Standards Track [Page 3]

et



RFC 8551 S/MIME 4.0 Message Specification April 2019
3.9. Registration Requests 38
3.10. Identifying an S/MIME Message 39

4, Certificate Processing 39
4.1. Key Pair Generation 40
4.2. Signature Generation 40
4.3. Signature Verification 40
4.4. Encryption 41
4.5. Decryption 41

5. IANA Considerations 41
5.1. Media Type for appllcatlon/pkcs7 mime 42
5.2. Media Type for application/pkcs7-signature 43
5.3. authEnveloped-data smime-type 44
5.4. Reference Updates 44

6. Security Considerations 44

7. References .o .o 48
7.1. Reference Conventlons 48
7.2. Normative References 49
7.3. Informative References 52

Appendix A. ASN.l1 Module 57

Appendix B. Historic Mail Con51deratlons 59
B.1. DigestAlgorithmIdentifier 59
B.2. Signature Algorithms 59
B.3. ContentEncrypt1onAlgor1thmIdent1f1er 61
B.4. KeyEncryptionAlgorithmIdentifier 62

Appendix C. Moving S/MIME v2 Message Spec1f1catlon to HlStOrlC

Status 62
Acknowledgements 62
Authors’ Addresses 63

Schaad,

et al. Standards Track

[Page 4]



RFC 8551 S/MIME 4.0 Message Specification April 2019

1.

1.

Introduction

S/MIME (Secure/Multipurpose Internet Mail Extensions) provides a
consistent way to send and receive secure MIME data. Based on the
popular Internet MIME standard, S/MIME provides the following
cryptographic security services for electronic messaging
applications: authentication, message integrity, and non-repudiation
of origin (using digital signatures), and data confidentiality (using
encryption). As a supplementary service, S/MIME provides message
compression.

S/MIME can be used by traditional mail user agents (MUAs) to add
cryptographic security services to mail that is sent, and to
interpret cryptographic security services in mail that is received.
However, S/MIME is not restricted to mail; it can be used with any
transport mechanism that transports MIME data, such as HTTP or SIP.
As such, S/MIME takes advantage of the object-based features of MIME
and allows secure messages to be exchanged in mixed-transport
systems.

Further, S/MIME can be used in automated message transfer agents that
use cryptographic security services that do not require any human
intervention, such as the signing of software—-generated documents and
the encryption of FAX messages sent over the Internet.

This document defines version 4.0 of the S/MIME Message
Specification. As such, this document obsoletes version 3.2 of the
S/MIME Message Specification [RFC5751].

This specification contains a number of references to documents that
have been obsoleted or replaced. This is intentional, as the updated
documents often do not have the same information or protocol
requirements in them.

1. Specification Overview

This document describes a protocol for adding cryptographic signature
and encryption services to MIME data. The MIME standard [MIME-SPEC]
provides a general structure for the content of Internet messages and
allows extensions for new applications based on content-type.

This specification defines how to create a MIME body part that has
been cryptographically enhanced according to the Cryptographic
Message Syntax (CMS) [CMS], which is derived from PKCS #7 [RFC2315].
This specification also defines the application/pkcs7-mime media
type, which can be used to transport those body parts.

Schaad, et al. Standards Track [Page 5]



RFC 8551 S/MIME 4.0 Message Specification April 2019

This document also discusses how to use the multipart/signed media
type defined in [RFC1847] to transport S/MIME signed messages.
multipart/signed is used in conjunction with the
application/pkcs7-signature media type, which is used to transport a
detached S/MIME signature.

In order to create S/MIME messages, an S/MIME agent MUST follow the
specifications in this document, as well as the specifications listed
in [CMS], [RFC3370], [RFC4056], [RFC3560], and [RFC5754].

Throughout this specification, there are requirements and
recommendations made for how receiving agents handle incoming
messages. There are separate requirements and recommendations for
how sending agents create outgoing messages. In general, the best
strategy is to follow the Robustness Principle (be liberal in what
you receive and conservative in what you send). Most of the
requirements are placed on the handling of incoming messages, while
the recommendations are mostly on the creation of outgoing messages.

The separation for requirements on receiving agents and sending
agents also derives from the likelihood that there will be S/MIME
systems that involve software other than traditional Internet mail
clients. S/MIME can be used with any system that transports MIME
data. An automated process that sends an encrypted message might not
be able to receive an encrypted message at all, for example. Thus,
the requirements and recommendations for the two types of agents are
listed separately when appropriate.

1.2. Definitions

For the purposes of this specification, the following definitions
apply.

ASN.1:
Abstract Syntax Notation One, as defined in ITU-T Recommendations
X.680, X.681, X.682, and X.683 [ASN.1].

BER:

Basic Encoding Rules for ASN.1l, as defined in ITU-T Recommendation
X.690 [X.690].

Certificate:
A type that binds an entity’s name to a public key with a digital
signature.

DER:

Distinguished Encoding Rules for ASN.1l, as defined in ITU-T
Recommendation X.690 [X.690].

Schaad, et al. Standards Track [Page 6]



RFC 8551 S/MIME 4.0 Message Specification April 2019

7-bit data:
Text data with lines less than 998 characters long, where none of
the characters have the 8th bit set, and there are no NULL
characters. <CR> and <LF> occur only as part of a <CR><LF>
end-of-line delimiter.

8-bit data:
Text data with lines less than 998 characters, and where none of
the characters are NULL characters. <CR> and <LF> occur only as

part of a <CR><LF> end-of-line delimiter.

Binary data:
Arbitrary data.

Transfer encoding:
A reversible transformation made on data so 8-bit or binary data
can be sent via a channel that only transmits 7-bit data.

Receiving agent:
Software that interprets and processes S/MIME CMS objects, MIME
body parts that contain CMS content types, or both.

Sending agent:
Software that creates S/MIME CMS content types, MIME body parts
that contain CMS content types, or both.

S/MIME agent:
User software that is a receiving agent, a sending agent, or both.

Data integrity service:
A security service that protects against unauthorized changes to
data by ensuring that changes to the data are detectable
[REFC49409].

Data confidentiality:
The property that data is not disclosed to system entities unless
they have been authorized to know the data [RFC4949].

1.3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Schaad, et al. Standards Track [Page 7]



RFC 8551 S/MIME 4.0 Message Specification April 2019

We define the additional requirement levels:

SHOULD+ This term means the same as SHOULD. However, the authors
expect that a requirement marked as SHOULD+ will be
promoted at some future time to be a MUST.

SHOULD- This term means the same as SHOULD. However, the authors
expect that a requirement marked as SHOULD- will be demoted
to a MAY in a future version of this document.

MUST- This term means the same as MUST. However, the authors
expect that this requirement will no longer be a MUST in a
future document. Although its status will be determined at
a later time, it is reasonable to expect that if a future
revision of a document alters the status of a MUST-
requirement, it will remain at least a SHOULD or a SHOULD-.

The term "RSA" in this document almost always refers to the

PKCS #1 v1.5 RSA [RFC2313] signature or encryption algorithms even
when not qualified as such. There are a couple of places where it
refers to the general RSA cryptographic operation; these can be
determined from the context where it is used.

1.4. Compatibility with Prior Practice of S/MIME

S/MIME version 4.0 agents ought to attempt to have the greatest
interoperability possible with agents for prior versions of S/MIME.

- S/MIME version 2 is described in RFC 2311 through RFC 2315
inclusive [SMIMEv2].

- S/MIME version 3 is described in RFC 2630 through RFC 2634
inclusive and RFC 5035 [SMIMEv3].

- S/MIME version 3.1 is described in RFC 2634, RFC 3850, RFC 3851,
RFC 3852, and RFC 5035 [SMIMEv3.1].

- S/MIME version 3.2 is described in RFC 2634, RFC 5035, RFC 5652,
RFC 5750, and RFC 5751 [SMIMEv3.2].

- [RFC2311] also has historical information about the development of
S/MIME.

Schaad, et al. Standards Track [Page 8]



RFC 8551 S/MIME 4.0 Message Specification April 2019

1.5. Changes from S/MIME v3 to S/MIME v3.1

This section describes the changes made between S/MIME v3 and
S/MIME v3.1. Note that the requirement levels indicated by the
capitalized key words ("MUST", "SHOULD", etc.) may have changed in
later versions of S/MIME.

— The RSA public key algorithm was changed to a MUST implement. The
key wrap algorithm and the Diffie-Hellman (DH) algorithm [RFC2631]
were changed to a SHOULD implement.

— The AES symmetric encryption algorithm has been included as a
SHOULD implement.

— The RSA public key algorithm was changed to a MUST implement
signature algorithm.

— Ambiguous language about the use of "empty" SignedData messages to
transmit certificates was clarified to reflect that transmission
of Certificate Revocation Lists is also allowed.

— The use of binary encoding for some MIME entities is now
explicitly discussed.

— Header protection through the use of the message/rfc822 media type
has been added.

— Use of the CompressedData CMS type is allowed, along with required
media type and file extension additions.

1.6. Changes from S/MIME v3.1 to S/MIME v3.2

This section describes the changes made between S/MIME v3.1 and
S/MIME v3.2. Note that the requirement levels indicated by the
capitalized key words ("MUST", "SHOULD", etc.) may have changed in
later versions of S/MIME. Note that the section numbers listed here
(e.g., 3.4.3.2) are from [RFC5751].

— Made editorial changes, e.g., replaced "MIME type" with "media
type", "content-type" with "Content-Type".

— Moved "Conventions Used in This Document" to Section 1.3. Added
definitions for SHOULD+, SHOULD-, and MUST-.

— Section 1.1 and Appendix A: Added references to RFCs for

RSASSA-PSS, RSAES-OAEP, and SHA2 CMS algorithms. Added CMS
Multiple Signers Clarification to CMS reference.

Schaad, et al. Standards Track [Page 9]



RFC 8551 S/MIME 4.0 Message Specification April 2019

— Section 1.2: Updated references to ASN.1l to X.680, and BER and DER
to X.690.

— Section 1.4: Added references to S/MIME v3.1 RFCs.

— Section 2.1 (digest algorithm): SHA-256 added as MUST, SHA-1 and
MD5 made SHOULD-.

— Section 2.2 (signature algorithms): RSA with SHA-256 added as
MUST; DSA with SHA-256 added as SHOULD+; RSA with SHA-1, DSA with
SHA-1, and RSA with MD5 changed to SHOULD-; and RSASSA-PSS with
SHA-256 added as SHOULD+. Also added note about what S/MIME v3.1
clients support.

- Section 2.3 (key encryption): DH changed to SHOULD-, and RSAES-
OAEP added as SHOULD+. Elaborated on requirements for key wrap
algorithm.

— Section 2.5.1: Added requirement that receiving agents MUST
support both GeneralizedTime and UTCTime.

— Section 2.5.2: Replaced reference "shalWithRSAEncryption" with
"sha256WithRSAEncryption"”, replaced "DES-3EDE-CBC" with "AES-128
CBC", and deleted the RC5 example.

- Section 2.5.2.1: Deleted entire section (discussed
deprecated RC2).

- Section 2.7, Section 2.7.1, and Appendix A: References to RC2/40
removed.

— Section 2.7 (content encryption): AES-128 CBC added as MUST,
AES-192 and AES-256 CBC SHOULD+, and tripleDES now SHOULD-.

- Section 2.7.1: Updated pointers from 2.7.2.1 through 2.7.2.4 to
2.7.1.1 and 2.7.1.2.

— Section 3.1.1: Removed text about MIME character sets.

— Sections 3.2.2 and 3.6: Replaced "encrypted" with "enveloped".
Updated OID example to use AES-128 CBC OID.

— Section 3.4.3.2: Replaced "micalg" parameter for "SHA-1" with
"sha-1".

— Section 4: Updated reference to CERT v3.2.

Schaad, et al. Standards Track [Page 10]



RFC 8551 S/MIME 4.0 Message Specification April 2019

— Section 4.1: Updated RSA and DSA key size discussion. Moved last
four sentences to security considerations. Updated reference to
randomness requirements for security.

— Section 5: Added IANA registration templates to update media type
registry to point to this document as opposed to RFC 2311.

— Section 6: Updated security considerations.

— Section 7: Moved references from Appendix B to this section.
Updated references. Added informative references to SMIMEvZ2,
SMIMEv3, and SMIMEv3.1l.

- Appendix B: Added Appendix B to move S/MIME v2 to Historic status.
1.7. Changes for S/MIME v4.0

This section describes the changes made between S/MIME v3.2 and
S/MIME v4.0.

— Added the use of AuthEnvelopedData, including defining and
registering an smime-type value (Sections 2.4.4 and 3.4).

— Updated the content-encryption algorithms (Sections 2.7 and
2.7.1.2): added AES-256 Galois/Counter Mode (GCM), added
ChaCha20-Polyl305, removed mention of AES-192 Cipher Block
Chaining (CBC), and marked tripleDES as historic.

— Updated the set of signature algorithms (Section 2.2): added the
Edwards—curve Digital Signature Algorithm (EdDSA), added the
Elliptic Curve Digital Signature Algorithm (ECDSA), and marked DSA
as historic.

— Updated the set of digest algorithms (Section 2.1): added SHA-512,
and marked SHA-1 as historic.

— Updated the size of keys to be used for RSA encryption and RSA
signing (Section 4).

— Created Appendix B, which discusses considerations for dealing
with historic email messages.

Schaad, et al. Standards Track [Page 11]



RFC 8551 S/MIME 4.0 Message Specification April 2019

2.

2.

2

CMS Options

CMS allows for a wide variety of options in content, attributes, and
algorithm support. This section puts forth a number of support
requirements and recommendations in order to achieve a base level of
interoperability among all S/MIME implementations. [RFC3370] and
[RFC5754] provide additional details regarding the use of the
cryptographic algorithms. [ESS] provides additional details
regarding the use of additional attributes.

1. DigestAlgorithmIdentifier

The algorithms here are used for digesting the body of the message
and are not the same as the digest algorithms used as part of the
signature algorithms. The result of this is placed in the
message—-digest attribute of the signed attributes. It is RECOMMENDED
that the algorithm used for digesting the body of the message be of
similar strength to, or greater strength than, the signature
algorithm.

Sending and receiving agents:
- MUST support SHA-256.
- MUST support SHA-512.

[REC5754] provides the details for using these algorithms with
S/MIME.

.2. SignatureAlgorithmIdentifier

There are different sets of requirements placed on receiving and
sending agents. By having the different requirements, the maximum
amount of interoperability is achieved, as it allows for specialized
protection of private key material but maximum signature validation.
Receiving agents:

— MUST support ECDSA with curve P-256 and SHA-256.

- MUST support EdDSA with curve25519 using PureEdDSA mode [RFC8419].
- MUST- support RSA PKCS #1 v1.5 with SHA-256.

— SHOULD support the RSA Probabilistic Signature Scheme (RSASSA-PSS)
with SHA-256.

Schaad, et al. Standards Track [Page 12]



RFC 8551 S/MIME 4.0 Message Specification

Sending agents:

— MUST support at least one of the following algorithms:

April 2019

ECDSA with

curve P-256 and SHA-256, or EdDSA with curve25519 using PureEdDSA

mode.
- MUST- support RSA PKCS #1 v1.5 with SHA-256.

— SHOULD support RSASSA-PSS with SHA-256.

See Section 4.1 for information on key size and algorithm references.

2.3. KeyEncryptionAlgorithmIdentifier

Receiving and sending agents:

— MUST support Elliptic Curve Diffie-Hellman (ECDH) ephemeral-static

mode for P-256, as specified in [RFC5753].

— MUST support ECDH ephemeral-static mode for X25519 using HKDF-256

("HKDF" stands for "HMAC-based Key Derivation Function")

KDF, as specified in [RFC8418].

— MUST- support RSA encryption, as specified in [RFC3370].

for the

— SHOULD+ support RSA Encryption Scheme - Optimal Asymmetric
Encryption Padding (RSAES-OAEP), as specified in [RFC3560].

When ECDH ephemeral-static is used, a key wrap algorithm is also
specified in the KeyEncryptionAlgorithmIdentifier [RFC5652]. The
underlying encryption functions for the key wrap and content-
encryption algorithms [RFC3370] [RFC3565] and the key sizes for the
two algorithms MUST be the same (e.g., AES-128 key wrap algorithm
with AES-128 content-encryption algorithm). As both 128-bit and
256-bit AES modes are mandatory to implement as content-encryption

algorithms (Section 2.7), both the AES-128 and AES-256 key
algorithms MUST be supported when ECDH ephemeral-static is
Recipients MAY enforce this but MUST use the weaker of the
part of any cryptographic strength computations they might

wrap
used.
two as
do.

Appendix B provides information on algorithm support in older

versions of S/MIME.

2.4. General Syntax

There are several CMS content types. Of these, only the Data,
SignedData, EnvelopedData, AuthEnvelopedData, and CompressedData

content types are currently used for S/MIME.

Schaad, et al. Standards Track

[Page 13]



RFC 8551 S/MIME 4.0 Message Specification April 2019

2.4.1. Data Content Type

Sending agents MUST use the id-data content type identifier to
identify the "inner" MIME message content. For example, when
applying a digital signature to MIME data, the CMS SignedData
encapContentInfo eContentType MUST include the id-data object
identifier (OID), and the media type MUST be stored in the SignedData
encapContentInfo eContent OCTET STRING (unless the sending agent is
using multipart/signed, in which case the eContent is absent, per
Section 3.5.3 of this document). As another example, when applying
encryption to MIME data, the CMS EnvelopedData encryptedContentInfo
contentType MUST include the id-data OID and the encrypted MIME
content MUST be stored in the EnvelopedData encryptedContentInfo
encryptedContent OCTET STRING.

2.4.2. SignedData Content Type

Sending agents MUST use the SignedData content type to apply a
digital signature to a message or, in a degenerate case where there
is no signature information, to convey certificates. Applying a
signature to a message provides authentication, message integrity,
and non-repudiation of origin.

2.4.3. EnvelopedData Content Type

This content type is used to apply data confidentiality to a message.
In order to distribute the symmetric key, a sender needs to have
access to a public key for each intended message recipient to use
this service.

2.4.4. AuthEnvelopedData Content Type

This content type is used to apply data confidentiality and message
integrity to a message. This content type does not provide
authentication or non-repudiation. In order to distribute the
symmetric key, a sender needs to have access to a public key for each
intended message recipient to use this service.

2.4.5. CompressedData Content Type
This content type is used to apply data compression to a message.
This content type does not provide authentication, message integrity,
non-repudiation, or data confidentiality; it is only used to reduce

the message’s size.

See Section 3.7 for further guidance on the use of this type in
conjunction with other CMS types.

Schaad, et al. Standards Track [Page 14]



RFC 8551 S/MIME 4.0 Message Specification April 2019

2.5. Attributes and the SignerInfo Type

The SignerInfo type allows the inclusion of unsigned and signed
attributes along with a signature. These attributes can be required
for the processing of messages (e.g., message digest), information
the signer supplied (e.g., SMIME capabilities) that should be
processed, or attributes that are not relevant to the current
situation (e.g., mlExpansionHistory [RFC2634] for mail viewers).

Receiving agents MUST be able to handle zero or one instance of each
of the signed attributes listed here. Sending agents SHOULD generate
one instance of each of the following signed attributes in each
S/MIME message:

- Signing time (Section 2.5.1 in this document)
- SMIME capabilities (Section 2.5.2 in this document)
— Encryption key Preference (Section 2.5.3 in this document)
— Message digest (Section 11.2 in [RFC5652])
- Content type (Section 11.1 in [RFC5652])
Further, receiving agents SHOULD be able to handle zero or one
instance of the signingCertificate and signingCertificateV2 signed
attributes, as defined in Section 5 of RFC 2634 [ESS] and Section 3
of RFC 5035 [ESS], respectively.
Sending agents SHOULD generate one instance of the signingCertificate
or signingCertificateV2 signed attribute in each SignerInfo
structure.
Additional attributes and values for these attributes might be
defined in the future. Receiving agents SHOULD handle attributes or
values that they do not recognize in a graceful manner.
Interactive sending agents that include signed attributes that are
not listed here SHOULD display those attributes to the user, so that
the user is aware of all of the data being signed.

2.5.1. Signing Time Attribute
The signingTime attribute is used to convey the time that a message

was signed. The time of signing will most likely be created by a
signer and therefore is only as trustworthy as that signer.

Schaad, et al. Standards Track [Page 15]



RFC 8551 S/MIME 4.0 Message Specification April 2019

Sending agents MUST encode signing time through the year 2049 as
UTCTime; signing times in 2050 or later MUST be encoded as
GeneralizedTime. When the UTCTime CHOICE is used, S/MIME agents MUST
interpret the year field (YY) as follows:

If YY is greater than or equal to 50, the year is interpreted as
19YY; if YY is less than 50, the year is interpreted as 20YY.

Receiving agents MUST be able to process signingTime attributes that
are encoded in either UTCTime or GeneralizedTime.

2.5.2. SMIMECapabilities Attribute

The SMIMECapabilities attribute includes signature algorithms (such
as "sha256WithRSAEncryption”), symmetric algorithms (such as "AES-128
CBC"), authenticated symmetric algorithms (such as "AES-128 GCM"),
and key encipherment algorithms (such as "rsaEncryption"). The
presence of an SMIMECapability attribute containing an algorithm
implies that the sender can deal with the algorithm as well as
understand the ASN.1l structures associated with that algorithm.
There are also several identifiers that indicate support for other
optional features such as binary encoding and compression. The
SMIMECapabilities attribute was designed to be flexible and
extensible so that, in the future, a means of identifying other
capabilities and preferences such as certificates can be added in a
way that will not cause current clients to break.

If present, the SMIMECapabilities attribute MUST be a
SignedAttribute. CMS defines SignedAttributes as a SET OF Attribute.
The SignedAttributes in a signerInfo MUST include a single instance
of the SMIMECapabilities attribute. CMS defines the ASN.1l syntax for
Attribute to include attrValues SET OF AttributevValue. An
SMIMECapabilities attribute MUST only include a single instance of
AttributeValue. 1If a signature is detected as violating these
requirements, the signature SHOULD be treated as failing.

The semantics of the SMIMECapabilities attribute specify a partial
list as to what the client announcing the SMIMECapabilities can
support. A client does not have to list every capability it
supports, and it need not list all its capabilities so that the
capabilities list doesn’t get too long. In an SMIMECapabilities
attribute, the OIDs are listed in order of their preference but
SHOULD be separated logically along the lines of their categories
(signature algorithms, symmetric algorithms, key encipherment
algorithms, etc.).

Schaad, et al. Standards Track [Page 16]



RFC 8551 S/MIME 4.0 Message Specification April 2019

The structure of the SMIMECapabilities attribute is to facilitate
simple table lookups and binary comparisons in order to determine
matches. For instance, the encoding for the SMIMECapability for
sha256WithRSAEncryption includes rather than omits the NULL
parameter. Because of the requirement for identical encoding,
individuals documenting algorithms to be used in the
SMIMECapabilities attribute SHOULD explicitly document the correct
byte sequence for the common cases.

For any capability, the associated parameters for the OID MUST
specify all of the parameters necessary to differentiate between two
instances of the same algorithm.

The same OID that is used to identify an algorithm SHOULD also be
used in the SMIMECapability for that algorithm. There are cases
where a single OID can correspond to multiple algorithms. In these
cases, a single algorithm MUST be assigned to the SMIMECapability
using that OID. Additional OIDs from the smimeCapabilities OID tree
are then allocated for the other algorithms usages. For instance, in
an earlier specification, rsaEncryption was ambiguous because it
could refer to either a signature algorithm or a key encipherment
algorithm. In the event that an OID is ambiguous, it needs to be
arbitrated by the maintainer of the registered SMIMECapabilities list
as to which type of algorithm will use the 0OID, and a new OID MUST be
allocated under the smimeCapabilities OID to satisfy the other use of
the OID.

The registered SMIMECapabilities list specifies the parameters for
OIDs that need them, most notably key lengths in the case of
variable-length symmetric ciphers. In the event that there are no
differentiating parameters for a particular OID, the parameters MUST
be omitted and MUST NOT be encoded as NULL. Additional values for
the SMIMECapabilities attribute might be defined in the future.
Receiving agents MUST handle an SMIMECapabilities object that has
values that it does not recognize in a graceful manner.

Section 2.7.1 explains a strategy for caching capabilities.
2.5.3. Encryption Key Preference Attribute

The encryption key preference attribute allows the signer to
unambiguously describe which of the signer’s certificates has the
signer’s preferred encryption key. This attribute is designed to
enhance behavior for interoperating with those clients that use
separate keys for encryption and signing. This attribute is used to
convey to anyone viewing the attribute which of the listed
certificates is appropriate for encrypting a session key for future
encrypted messages.

Schaad, et al. Standards Track [Page 17]



RFC 8551 S/MIME 4.0 Message Specification April 2019

If present, the SMIMEEncryptionKeyPreference attribute MUST be a
SignedAttribute. CMS defines SignedAttributes as a SET OF Attribute.
The SignedAttributes in a signerInfo MUST include a single instance
of the SMIMEEncryptionKeyPreference attribute. CMS defines the ASN.1
syntax for Attribute to include attrValues SET OF AttributeValue. An
SMIMEEncryptionKeyPreference attribute MUST only include a single
instance of AttributeValue. If a signature is detected as wviolating
these requirements, the signature SHOULD be treated as failing.

The sending agent SHOULD include the referenced certificate in the
set of certificates included in the signed message if this attribute
is used. The certificate MAY be omitted if it has been previously
made available to the receiving agent. Sending agents SHOULD use
this attribute if the commonly used or preferred encryption
certificate is not the same as the certificate used to sign the
message.

Receiving agents SHOULD store the preference data if the signature on
the message is valid and the signing time is greater than the
currently stored value. (As with the SMIMECapabilities, the clock
skew SHOULD be checked and the data not used if the skew is too
great.) Receiving agents SHOULD respect the sender’s encryption key
preference attribute if possible. This, however, represents only a
preference, and the receiving agent can use any certificate in
replying to the sender that is wvalid.

Section 2.7.1 explains a strategy for caching preference data.
2.5.3.1. Selection of Recipient Key Management Certificate

In order to determine the key management certificate to be used when
sending a future CMS EnvelopedData message for a particular
recipient, the following steps SHOULD be followed:

- If an SMIMEEncryptionKeyPreference attribute is found in a
SignedData object received from the desired recipient, this
identifies the X.509 certificate that SHOULD be used as the X.509
key management certificate for the recipient.

- 1If an SMIMEEncryptionKeyPreference attribute is not found in a
SignedData object received from the desired recipient, the set of
X.509 certificates SHOULD be searched for an X.509 certificate
with the same subject name as the signer of an X.509 certificate
that can be used for key management.

Schaad, et al. Standards Track [Page 18]



RFC 8551 S/MIME 4.0 Message Specification April 2019

- Or, use some other method of determining the user’s key management
key. If an X.509 key management certificate is not found, then
encryption cannot be done with the signer of the message. If
multiple X.509 key management certificates are found, the S/MIME
agent can make an arbitrary choice between them.

2.6. SignerIdentifier SignerInfo Type

S/MIME v4.0 implementations MUST support both issuerAndSerialNumber
and subjectKeyIdentifier. Messages that use the subjectKeyIdentifier
choice cannot be read by S/MIME v2 clients.

It is important to understand that some certificates use a value for
subjectKeyIdentifier that is not suitable for uniquely identifying a
certificate. Implementations MUST be prepared for multiple
certificates for potentially different entities to have the same
value for subjectKeyIdentifier and MUST be prepared to try each
matching certificate during signature verification before indicating
an error condition.

2.7. ContentEncryptionAlgorithmIdentifier
Sending and receiving agents:

— MUST support encryption and decryption with AES-128 GCM and
AES-256 GCM [RFC5084].

- MUST- support encryption and decryption with AES-128 CBC
[RFC3565] .

— SHOULD+ support encryption and decryption with ChaCha20-Polyl1305
[REC79057].

2.7.1. Deciding Which Encryption Method to Use

When a sending agent creates an encrypted message, it has to decide
which type of encryption to use. The decision process involves using
information garnered from the capabilities lists included in messages
received from the recipient, as well as out-of-band information such
as private agreements, user preferences, legal restrictions, and

so on.

Section 2.5.2 defines a method by which a sending agent can
optionally announce, among other things, its decrypting capabilities
in its order of preference. The following method for processing and
remembering the encryption capabilities attribute in incoming signed
messages SHOULD be used.

Schaad, et al. Standards Track [Page 19]



RFC 8551 S/MIME 4.0 Message Specification April 2019

— If the receiving agent has not yet created a list of capabilities
for the sender’s public key, then, after verifying the signature
on the incoming message and checking the timestamp, the receiving
agent SHOULD create a new list containing at least the signing
time and the symmetric capabilities.

— If such a list already exists, the receiving agent SHOULD verify
that the signing time in the incoming message is greater than the
signing time stored in the list and that the signature is wvalid.
If so, the receiving agent SHOULD update both the signing time and
capabilities in the 1list. Values of the signing time that lie far
in the future (that is, a greater discrepancy than any reasonable
clock skew), or a capabilities list in messages whose signature
could not be verified, MUST NOT be accepted.

The list of capabilities SHOULD be stored for future use in creating
messages.

Before sending a message, the sending agent MUST decide whether it is
willing to use weak encryption for the particular data in the
message. If the sending agent decides that weak encryption is
unacceptable for this data, then the sending agent MUST NOT use a
weak algorithm. The decision to use or not use weak encryption
overrides any other decision in this section about which encryption
algorithm to use.

Sections 2.7.1.1 and 2.7.1.2 describe the decisions a sending agent
SHOULD use when choosing which type of encryption will be applied to
a message. These rules are ordered, so the sending agent SHOULD make
its decision in the order given.

2.7.1.1. Rule 1: Known Capabilities

If the sending agent has received a set of capabilities from the
recipient for the message the agent is about to encrypt, then the
sending agent SHOULD use that information by selecting the first
capability in the list (that is, the capability most preferred by the
intended recipient) that the sending agent knows how to encrypt. The
sending agent SHOULD use one of the capabilities in the list if the
agent reasonably expects the recipient to be able to decrypt the
message.

2.7.1.2. Rule 2: Unknown Capabilities, Unknown Version of S/MIME
If the following two conditions are met, the sending agent SHOULD use

AES-256 GCM, as AES-256 GCM is a stronger algorithm and is required
by S/MIME v4.0:

Schaad, et al. Standards Track [Page 20]



RFC 8551 S/MIME 4.0 Message Specification April 2019

— The sending agent has no knowledge of the encryption capabilities
of the recipient.

— The sending agent has no knowledge of the version of S/MIME used
or supported by the recipient.

If the sending agent chooses not to use AES-256 GCM in this step,
given the presumption is that a client implementing AES-GCM would do
both AES-256 and AES-128, it SHOULD use AES-128 CBC.

2.7.2. Choosing Weak Encryption

Algorithms such as RC2 are considered to be weak encryption
algorithms. Algorithms such as TripleDES are not state of the art
and are considered to be weaker algorithms than AES. A sending agent
that is controlled by a human SHOULD allow a human sender to
determine the risks of sending data using a weaker encryption
algorithm before sending the data, and possibly allow the human to
use a stronger encryption algorithm such as AES GCM or AES CBC even
if there is a possibility that the recipient will not be able to
process that algorithm.

2.7.3. Multiple Recipients

If a sending agent is composing an encrypted message to a group of
recipients where the encryption capabilities of some of the
recipients do not overlap, the sending agent is forced to send more
than one message. Please note that if the sending agent chooses to
send a message encrypted with a strong algorithm and then send the
same message encrypted with a weak algorithm, someone watching the
communications channel could learn the contents of the strongly
encrypted message simply by decrypting the weakly encrypted message.

3. Creating S/MIME Messages

This section describes the S/MIME message formats and how they are
created. S/MIME messages are a combination of MIME bodies and CMS
content types. Several media types as well as several CMS content
types are used. The data to be secured is always a canonical MIME
entity. The MIME entity and other data, such as certificates and
algorithm identifiers, are given to CMS processing facilities that
produce a CMS object. Finally, the CMS object is wrapped in MIME.
The "Enhanced Security Services for S/MIME" documents [ESS] provide
descriptions of how nested, secured S/MIME messages are formatted.
ESS provides a description of how a triple-wrapped S/MIME message 1is
formatted using multipart/signed and application/pkcs7-mime for the
signatures.

Schaad, et al. Standards Track [Page 21]



RFC 8551 S/MIME 4.0 Message Specification April 2019

S/MIME provides one format for enveloped-only data, several formats
for signed-only data, and several formats for signed and enveloped
data. Several formats are required to accommodate several
environments —-- in particular, for signed messages. The criteria for
choosing among these formats are also described.

Anyone reading this section is expected to understand MIME as
described in [MIME-SPEC] and [RFC1847].

3.1. Preparing the MIME Entity for Signing, Enveloping, or Compressing

S/MIME is used to secure MIME entities. A MIME message 1is composed
of a MIME header and a MIME body. A body can consist of a single
MIME entity or a tree of MIME entities (rooted with a multipart).
S/MIME can be used to secure either a single MIME entity or a tree of
MIME entities. These entities can be in locations other than the
root. S/MIME can be applied multiple times to different entities in
a single message. A MIME entity that is the whole message includes
only the MIME message headers and MIME body and does not include the
rfc822 header. Note that S/MIME can also be used to secure MIME
entities used in applications other than Internet mail. For cases
where protection of the rfc822 header is required, the use of the
message/rfc822 media type is explained later in this section.

The MIME entity that is secured and described in this section can be
thought of as the "inside" MIME entity. That is, it is the
"innermost" object in what is possibly a larger MIME message.
Processing "outside" MIME entities into CMS EnvelopedData,
CompressedData, and AuthEnvelopedData content types is described in
Sections 3.2 and 3.5. Other documents define additional CMS content
types; those documents should be consulted for processing those CMS
content types.

The procedure for preparing a MIME entity is given in [MIME-SPEC].
The same procedure is used here with some additional restrictions
when signing. The description of the procedures from [MIME-SPEC] is
repeated here, but it is suggested that the reader refer to those
documents for the exact procedures. This section also describes
additional requirements.

A single procedure is used for creating MIME entities that are to
have any combination of signing, enveloping, and compressing applied.
Some additional steps are recommended to defend against known
corruptions that can occur during mail transport that are of
particular importance for clear-signing using the multipart/signed
format. It is recommended that these additional steps be performed
on enveloped messages, or signed and enveloped messages, so that the
messages can be forwarded to any environment without modification.

Schaad, et al. Standards Track [Page 22]



RFC 8551 S/MIME 4.0 Message Specification April 2019

These steps are descriptive rather than prescriptive. The
implementer is free to use any procedure as long as the result is
the same.

Step 1. The MIME entity is prepared according to local conventions.

Step 2. The leaf parts of the MIME entity are converted to
canonical form.

Step 3. Appropriate transfer encoding is applied to the leaves
of the MIME entity.

When an S/MIME message is received, the security services on the
message are processed, and the result is the MIME entity. That MIME
entity is typically passed to a MIME-capable user agent where it is
further decoded and presented to the user or receiving application.

In order to protect outer, non-content-related message header fields
(for instance, the "Subject", "To", "From", and "Cc" fields), the
sending client MAY wrap a full MIME message in a message/rfc822
wrapper in order to apply S/MIME security services to these header
fields. It is up to the receiving client to decide how to present
this "inner" header along with the unprotected "outer" header. Given
the security difference between headers, it is RECOMMENDED that the
receiving client provide a distinction between header fields,
depending on where they are located.

When an S/MIME message 1is received, if the top-level protected MIME
entity has a Content-Type of message/rfc822, it can be assumed that
the intent was to provide header protection. This entity SHOULD be
presented as the top-level message, taking into account
header-merging issues as previously discussed.

3.1.1. Canonicalization

Each MIME entity MUST be converted to a canonical form that is
uniquely and unambiguously representable in the environment where the
signature is created and the environment where the signature will be
verified. MIME entities MUST be canonicalized for enveloping and
compressing as well as signing.

The exact details of canonicalization depend on the actual media type
and subtype of an entity and are not described here. Instead, the
standard for the particular media type SHOULD be consulted. For
example, canonicalization of type text/plain is different from
canonicalization of audio/basic. Other than text types, most types
have only one representation, regardless of computing platform or
environment, that can be considered their canonical representation.

Schaad, et al. Standards Track [Page 23]



RFC 8551 S/MIME 4.0 Message Specification April 2019

In general, canonicalization will be performed by the non-security
part of the sending agent rather than the S/MIME implementation.

The most common and important canonicalization is for text, which is
often represented differently in different environments. MIME
entities of major type "text" MUST have both their line endings and
character set canonicalized. The line ending MUST be the pair of
characters <CR><LF>, and the charset SHOULD be a registered charset
[CHARSETS]. The details of the canonicalization are specified in
[MIME-SPEC] .

Note that some charsets such as IS0-2022 have multiple
representations for the same characters. When preparing such text
for signing, the canonical representation specified for the charset
MUST be used.

3.1.2. Transfer Encoding

When generating any of the secured MIME entities below, except the
signing using the multipart/signed format, no transfer encoding is
required at all. S/MIME implementations MUST be able to deal with
binary MIME objects. If no Content-Transfer-Encoding header field is
present, the transfer encoding is presumed to be 7BIT.

As a rule, S/MIME implementations SHOULD use transfer encoding as
described in Section 3.1.3 for all MIME entities they secure. The
reason for securing only 7-bit MIME entities, even for enveloped data
that is not exposed to the transport, is that it allows the MIME
entity to be handled in any environment without changing it. For
example, a trusted gateway might remove the envelope, but not the
signature, of a message, and then forward the signed message on to
the end recipient so that they can verify the signatures directly.
If the transport internal to the site is not 8-bit clean, such as on
a wide-area network with a single mail gateway, verifying the
signature will not be possible unless the original MIME entity was
only 7-bit data.

In the case where S/MIME implementations can determine that all
intended recipients are capable of handling inner (all but the
outermost) binary MIME objects, implementations SHOULD use binary
encoding as opposed to a 7-bit-safe transfer encoding for the inner
entities. The use of a 7-bit-safe encoding (such as base64)
unnecessarily expands the message size. Implementations MAY
determine that recipient implementations are capable of

handling inner binary MIME entities by (1) interpreting the
id-cap-preferBinaryInside SMIMECapabilities attribute, (2) prior
agreement, or (3) other means.

Schaad, et al. Standards Track [Page 24]



RFC 8551 S/MIME 4.0 Message Specification April 2019

If one or more intended recipients are unable to handle inner binary
MIME objects or if this capability is unknown for any of the intended
recipients, S/MIME implementations SHOULD use transfer encoding as
described in Section 3.1.3 for all MIME entities they secure.

3.1.3. Transfer Encoding for Signing Using multipart/signed

If a multipart/signed entity is ever to be transmitted over the
standard Internet SMTP infrastructure or other transport that is
constrained to 7-bit text, it MUST have transfer encoding applied so
that it is represented as 7-bit text. MIME entities that are already
7-bit data need no transfer encoding. Entities such as 8-bit text
and binary data can be encoded with quoted-printable or base64
transfer encoding.

The primary reason for the 7-bit requirement is that the Internet
mail transport infrastructure cannot guarantee transport of 8-bit or
binary data. Even though many segments of the transport
infrastructure now handle 8-bit and even binary data, it is sometimes
not possible to know whether the transport path is 8-bit clean. If a
mail message with 8-bit data were to encounter a message transfer
agent that cannot transmit 8-bit or binary data, the agent has three
options, none of which are acceptable for a clear-signed message:

— The agent could change the transfer encoding; this would
invalidate the signature.

— The agent could transmit the data anyway, which would most likely
result in the 8th bit being corrupted; this too would invalidate
the signature.

— The agent could return the message to the sender.

[RFC1847] prohibits an agent from changing the transfer encoding of
the first part of a multipart/signed message. If a compliant agent
that cannot transmit 8-bit or binary data encountered a
multipart/signed message with 8-bit or binary data in the first part,
it would have to return the message to the sender as undeliverable.

3.1.4. Sample Canonical MIME Entity

This example shows a multipart/mixed message with full transfer
encoding. This message contains a text part and an attachment. The
sample message text includes characters that are not ASCII and thus
need to be transfer encoded. Though not shown here, the end of each
line is <CR><LF>. The line ending of the MIME headers, the text, and
the transfer—-encoded parts all MUST be <CR><LF>.

Schaad, et al. Standards Track [Page 25]



RFC 8551 S/MIME 4.0 Message Specification April 2019

Note that this example is not an example of an S/MIME message.
Content-Type: multipart/mixed; boundary=bar

—-—bar
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable

=AlHola Michael!
How do you like the new S/MIME specification?

It’s generally a good idea to encode lines that begin with
From=20because some mail transport agents will insert a
greater-than (>) sign, thus invalidating the signature.

Also, in some cases it might be desirable to encode any =20
trailing whitespace that occurs on lines in order to ensure =20
that the message signature is not invalidated when passing =20
a gateway that modifies such whitespace (like BITNET). =20

—--bar
Content-Type: image/jpeg
Content-Transfer-Encoding: base64

1QCVAWUBMJIrRF2N90oWBghPDJAQE9UQQALt17LuRVNdBjrk4EqYBIb3h5QXIX/LC//
JIVSDLNVKZIGPICEmMISiFd9boEgvpirHt IREEGLOQRkYNOBACtFBZmh9GC3C041WGq
uMbrbxc+nIsl1TIK1A08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLlhe/zhdfolT9Brn
HOxEa44b+EI=

—--bar—-
3.2. The application/pkcs7-mime Media Type

The application/pkcs7-mime media type is used to carry CMS content
types, including EnvelopedData, SignedData, and CompressedData. The
details of constructing these entities are described in subsequent
sections. This section describes the general characteristics of the
application/pkcs7-mime media type.

The carried CMS object always contains a MIME entity that is prepared
as described in Section 3.1 if the eContentType is id-data. Other
contents MAY be carried when the eContentType contains different
values. See [ESS] for an example of this with signed receipts.

Since CMS content types are binary data, in most cases base64

transfer encoding is appropriate —-- in particular, when used with
SMTP transport. The transfer encoding used depends on the transport

Schaad, et al. Standards Track [Page 26]



RFC 8551 S/MIME 4.0 Message Specification April 2019

through which the object is to be sent and is not a characteristic of
the media type.

Note that this discussion refers to the transfer encoding of the CMS

object or "outside"™ MIME entity. It is completely distinct from, and
unrelated to, the transfer encoding of the MIME entity secured by the
CMS object —- the "inside" object, which is described in Section 3.1.

Because there are several types of application/pkcs7-mime objects, a
sending agent SHOULD do as much as possible to help a receiving agent
know about the contents of the object without forcing the receiving
agent to decode the ASN.1l for the object. The Content-Type header
field of all application/pkcs7-mime objects SHOULD include the
optional "smime-type" parameter, as described in the following
sections.

3.2.1. The name and filename Parameters

For application/pkcs7-mime, sending agents SHOULD emit the

optional "name" parameter to the Content-Type field for compatibility
with older systems. Sending agents SHOULD also emit the optional
Content-Disposition field [RFC2183] with the "filename" parameter.

If a sending agent emits the above parameters, the value of the
parameters SHOULD be a filename with the appropriate extension:

File
Media Type Extension
application/pkcs7-mime (SignedData, EnvelopedData, .p7m
AuthEnvelopedData)
application/pkcs7-mime (degenerate SignedData certificate .p7c
management message)
application/pkcs7-mime (CompressedData) .p7z
application/pkcs7-signature (SignedData) .p7s

In addition, the filename SHOULD be limited to eight characters
followed by a three-letter extension. The eight-character filename
base can be any distinct name; the use of the filename base "smime"
SHOULD be used to indicate that the MIME entity is associated with
S/MIME.

Including a filename serves two purposes. It facilitates easier use
of S/MIME objects as files on disk. It also can convey type
information across gateways. When a MIME entity of type
application/pkcs7-mime (for example) arrives at a gateway that has no
special knowledge of S/MIME, it will default the entity’s media type
to application/octet—-stream and treat it as a generic attachment,
thus losing the type information. However, the suggested filename

Schaad, et al. Standards Track [Page 27]



RFC 8551 S/MIME 4.0 Message Specification April 2019

for an attachment is often carried across a gateway. This often
allows the receiving systems to determine the appropriate application
to hand the attachment off to —- in this case, a standalone S/MIME
processing application. Note that this mechanism is provided as a
convenience for implementations in certain environments. A proper
S/MIME implementation MUST use the media types and MUST NOT rely on
the file extensions.

3.2.2. The smime-type Parameter

The application/pkcs7-mime content type defines the optional
"smime-type" parameter. The intent of this parameter is to convey
details about the security applied (signed or enveloped) along with
information about the contained content. This specification defines
the following smime-types.

Name CMS Type Inner Content
enveloped-data EnvelopedData id-data
signed-data SignedData id-data
certs-only SignedData id-data
compressed-data CompressedData id-data
authEnveloped—-data AuthEnvelopedData id-data

In order for consistency to be obtained with future specifications,
the following guidelines SHOULD be followed when assigning a new
smime-type parameter.

1. If both signing and encryption can be applied to the content,
then three values for smime-type SHOULD be assigned: "signed-*",
"authEnv-*", and "enveloped-*". If one operation can be
assigned, then this can be omitted. Thus, since "certs-only" can
only be signed, "signed-" is omitted.

2. A common string for a content OID SHOULD be assigned. We use
"data" for the id-data content OID when MIME is the inner
content.

3. If no common string is assigned, then the common string of
"OID.<oid>" is recommended (for example,
"0ID.2.16.840.1.101.3.4.1.2" would be AES-128 CBC).

It is explicitly intended that this field be a suitable hint for mail
client applications to indicate whether a message is "signed",
"authEnveloped", or "enveloped" without having to tunnel into the CMS
payload.

Schaad, et al. Standards Track [Page 28]



RFC 8551 S/MIME 4.0 Message Specification April 2019

A registry for additional smime-type parameter values has been
defined in [RFC7114].

3.3. Creating an Enveloped-Only Message

This section describes the format for enveloping a MIME entity
without signing it. It is important to note that sending enveloped
but not signed messages does not provide for data integrity. The
"enveloped-only" structure does not support authenticated symmetric
algorithms. Use the "authenticated enveloped" structure for these
algorithms. Thus, it is possible to replace ciphertext in such a way
that the processed message will still be wvalid, but the meaning can
be altered.

Step 1. The MIME entity to be enveloped is prepared according to
Section 3.1.

Step 2. The MIME entity and other required data are processed into a
CMS object of type EnvelopedData. In addition to encrypting
a copy of the content-encryption key (CEK) for each
recipient, a copy of the CEK SHOULD be encrypted for the
originator and included in the EnvelopedData (see [RFC5652],
Section 6).

Step 3. The EnvelopedData object is wrapped in a CMS ContentInfo
object.

Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.

The smime-type parameter for enveloped-only messages is
"enveloped-data". The file extension for this type of message
is ".p7m".

A sample message would be:

Content-Type: application/pkcs7-mime; name=smime.p7m;
smime-type=enveloped-data

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

MIIBHgYJKoZIhvcNAQcDoIIBDzCCAQsCAQAxgcAWgbOCAQAWT JASMRAWDgYDVQQDEwW
dDYXJsU1INBAhBGNGVHgABWvBHTb1 7NXXHQOMAOGCSgGSIb3DQEBAQUABIGAC3ENSNGI
1J121sGPcP21J97a4e8kbKQz362z2g6Z22i0yx6zYC4mZ 7TmX7FBs3IWg+f6KgCLx3M1leC
bWx8+MDFbbpXadCDgO8/nUkUNYeNxJtuzubGgzoyEd8Ch4H/dd9gdzTd+taTEgS0ip
dSJuNnkVY4/M652 JKKHRLF£02hosdR8wQwYJKoZ IThvcNAQcBMBQGCCGS Ib3DQMHBA
gt aMXpRwZRNYAgDsiSf8Z9P43LrY40xUk660cullXeCSFOSOpOJ7FuVyU=

Schaad, et al. Standards Track [Page 29]



RFC 8551 S/MIME 4.0 Message Specification April 2019

3.4. Creating an Authenticated Enveloped-Only Message

This section describes the format for enveloping a MIME entity
without signing it. Authenticated enveloped messages provide
confidentiality and data integrity. It is important to note that
sending authenticated enveloped messages does not provide for proof
of origination when using S/MIME. It is possible for a third party
to replace ciphertext in such a way that the processed message will
still be valid, but the meaning can be altered. However, this is
substantially more difficult than it is for an enveloped-only
message, as the algorithm does provide a level of authentication.
Any recipient for whom the message is encrypted can replace it
without detection.

Step 1. The MIME entity to be enveloped is prepared according to
Section 3.1.

Step 2. The MIME entity and other required data are processed into a
CMS object of type AuthEnvelopedData. In addition to
encrypting a copy of the CEK for each recipient, a copy of
the CEK SHOULD be encrypted for the originator and included
in the AuthEnvelopedData (see [RFC5083]).

Step 3. The AuthEnvelopedData object is wrapped in a CMS ContentInfo
object.

Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.

The smime-type parameter for authenticated enveloped-only messages is

"authEnveloped-data". The file extension for this type of message
is ".p7m".

Schaad, et al. Standards Track [Page 30]



RFC 8551 S/MIME 4.0 Message Specification April 2019

A sample message would be:

Content-Type: application/pkcs7-mime; smime-type=authEnveloped-data;
name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

MIIDWQYLKoZIhvcNAQkQARegggNIMIIDRAIBADGBV jCBuwIBADAMMBIXEDAO
BgNVBAMTBONhcmxSUOECEEY0a8eAAFa8EdNuLsldcdAwCwYJKoZIhvcNAQEB
BIGAgYyZJoOERTxA4xdTri5P5tVMyhORARepTUCORZV1UbcUlal8IpJzZH3/J1
Fv6MxTRS40/K+ZcT1OmYeWLQvwd1ltQdOIP3mhpgXzTnOYhTK1IDtF2zx75Lg
vE+i1ilpcLIzXfJB4RCBPtBWaHAOf4Wb+VMQvILkk9001X4mRSH1LPktgAwggdg
BgkghkiGOwOBBWEWGWYJYIZIAWUDBAEGMA4EDGP1iz1i0C90HSsnNx40CCAJT7Y
Cb8r0y8+55106newEJohC/aDgWbJhrMKzSOwa7JraXOV3HXD3NvKb1l 665dRx
vmDwSCNaLCRU5g8/AxQx2SvnAbM+JKcEfC/VFdd4SiHNiUECAApLku2rMi5B
WrhW/FXmx 9d+cjum2BRwB3wjO0glwajdB0/kVRbQwg697dnlYyUogdvpJERIr
TKAkawZx1RMHaM18wgZ jUNpCBXFS3chQi9mTBp2i2Hf5iZ2800tTx+rCQUMI 6
Jhy03vdcPCCARBjn3v0d3upZYDZddMA41CBIfKnnWF jadV1KpYwv80tgsEfx
Vo01lJQ5VtIJ8MHIiBpLVKadRIZ4iH2ULCOJtNSmXE1SrFKh7cgbJd4+7ngSRL3
oBTud3rX41DGshOjpgcYHT4sqgY1lgZkc6dp0gl+hFlp3cGmjHdpysV2NVSUev
ghHbvSghIsXFzRSWKiZ0igmlkv3R5LnjpYyP4brM62J17y0gborvV4dNMz 7m
D+5YxS1HOKAe8z6TT3LHUQAN7QCkFoiUSCaNhpAFaakkGIpgcgLhpOK41Xxt
kptCG93eUwNCcTxtx6bXufPR5TUHohvZvEfegqMp42kL37FJC/A8ZH0OxXy8+X
X5QYXCONuofWlvnIWvONr8w65x61gVijPYmd/cHwzQKBTBMXN6pBud/PZL5zF
tw3QH1QkBR+Uf1IMWZKeN9LOKdAQ27mQ1Co59Q0S85aifx0iiA2v9+0hxZw9olrP
IW4D+GS70MMOK j8ZNyCJJsyf5smRZ+WxeBoolb3+TiGecBBCsRnfe6noLZiFO
6Zeu2ZwE

3.5. Creating a Signed-Only Message
There are two formats for signed messages defined for S/MIME:
- application/pkcs7-mime with SignedData.
- multipart/signed.

In general, the multipart/signed form is preferred for sending, and
receiving agents MUST be able to handle both.

Schaad, et al. Standards Track [Page 31]



RFC 8551 S/MIME 4.0 Message Specification April 2019

3.5.1. Choosing a Format for Signed-Only Messages

There are no hard-and-fast rules as to when a particular signed-only
format is chosen. It depends on the capabilities of all the
receivers and the relative importance of receivers with S/MIME
facilities being able to verify the signature versus the importance
of receivers without S/MIME software being able to view the message.

Messages signed using the multipart/signed format can always be
viewed by the receiver whether or not they have S/MIME software.
They can also be viewed whether they are using a MIME-native user
agent or they have messages translated by a gateway. In this
context, "be viewed" means the ability to process the message
essentially as if it were not a signed message, including any other
MIME structure the message might have.

Messages signed using the SignedData format cannot be viewed by a
recipient unless they have S/MIME facilities. However, the
SignedData format protects the message content from being changed by
benign intermediate agents. Such agents might do line wrapping or
content-transfer encoding changes that would break the signature.

3.5.2. Signing Using application/pkcs7-mime with SignedData

This signing format uses the application/pkcs7-mime media type. The
steps to create this format are as follows:

Step 1. The MIME entity is prepared according to Section 3.1.

Step 2. The MIME entity and other required data are processed into a
CMS object of type SignedData.

Step 3. The SignedData object is wrapped in a CMS ContentInfo
object.

Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.

The smime-type parameter for messages using application/pkcs7-mime

with SignedData is "signed-data". The file extension for this type
of message is ".p7m".

Schaad, et al. Standards Track [Page 32]



RFC 8551 S/MIME 4.0 Message Specification April 2019

A sample message would be:

Content-Type: application/pkcs7-mime; smime-type=signed-data;
name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

MIIDmQYJKoZIhvecNAQcCoIIDijCCA4YCAQEXCTAHBgUrDgMCGjAtBgkghkiGIw0OBBw
GgIAQeDQpUaGlzIGlzIHNVvbWUgc2FtcGx1IGNvbnR1bnQuoIIC4DCCAtwwggKboAMC
AQICAgDIMAKGBygGSM44BAMWE JEQMA4GA1UEAXMHQ2FyDERTUZAeFWwO50TA4MT cwMT
EwND1laFw0zOTEyMzEyMzU5NT1aMBMxETAPBgNVBAMTCEF saWN1RFNTMIIBt JCCASsG
BygGSM44BAEwggEeA0GBAIGNze2D6ggqeOT7CSCij5EeT3Q7XgA7sU8WrhAhP /5Thc0
h+DNbzREjR/p+VvpKGIL+HZMMg2 3 j+bv7dM3F9piuR10DcMkQivVm96nXvn89J8v3UOo
11TxP7AHCEdNXY jDw7Wz41UIddU5dhDEeL3/nbCElzfy5FEbteQJdl1lzzf1vbAhUA4k
emGkVmuBPG20+4NyErYov3k80CgYAMONAULiTKgqOfs+bd 1 LWWpMdiM5BAT1XPLLGjDD
H1Bd3ZtZ4s2gBT1YwHUiNrhuB699ikI1lp/R1z00IXks+kPht6pzJIYo7dhTpzi5dow
fNI4W4LzABfG1JiRGINkKS9+MiVSINWteL5c+waYTYfEX/Cve3RUP+YdMLRgUpgObo?2
OQOBhAACQYBc471adRSWC6163eM/geysXty 9t kMRNKYWiSgRI 9k 0hmd1ldRMSPUNbb+
VRv/qJ8qIbPiRIPQeNW2PIu0WloEr jhdbOBoA/6CN+GvIkglMauCcNHU8Iv2YUgFxi
rGX6FYvxuzTUOpY39mFHssQyhPB+QUDIRqgdJT jPypel.080P 1uKOBgTB/MAWGA1UdEwW
EB/wQCMAAwWDgYDVROPAQH/BAQDAgbAMB8GA1UdIwWQYMBaAFHBEPoTub4feStN14z0g
VEMrk/EfMBOGA1UdDgQWBBS+bKGz48H37UNwWpM4TAeL.945f+2zTAfBgNVHREEGDAWGR
RBbG1jZURTUOBleGFtcGx1LmNvbTAIBgcghk JOOAQDAZAAMCOCFFUMpBkfQiudcSIz
JYNgtTlna79FAhUAN2FTULQLXLLA2ud2HeIQU1tDXr0xYzBhAgEBMBgwWE JEQMA4GAL
UEAxXMHQ2FybERTUwWICAMgwBWYFKw4DAhowCQYHK0Z Iz jgEAWQUMCWCEFD1cSW6LIUFz
eX1e3YI5SKSBer/sAhQmCqg7s/CTFHOE jgASeUjbMpx5g6A==

3.5.3. Signing Using the multipart/signed Format

This format is a clear—-signing format. Recipients without any S/MIME
or CMS processing facilities are able to view the message. It makes
use of the multipart/signed media type described in [RFC1847]. The
multipart/signed media type has two parts. The first part contains
the MIME entity that is signed; the second part contains the
"detached signature" CMS SignedData object in which the
encapContentInfo eContent field is absent.

3.5.3.1. The application/pkcs7-signature Media Type
This media type always contains a CMS ContentInfo containing a single
CMS object of type SignedData. The SignedData encapContentInfo
eContent field MUST be absent. The signerInfos field contains the
signatures for the MIME entity.

The file extension for signed-only messages using
application/pkcs7-signature is ".p7s".

Schaad, et al. Standards Track [Page 33]



RFC 8551 S/MIME 4.0 Message Specification April 2019

3.5.3.2. Creating a multipart/signed Message

Step 1. The MIME entity to be signed is prepared according to
Section 3.1, taking special care for clear-signing.

Step 2. The MIME entity is presented to CMS processing in order to
obtain an object of type SignedData in which the
encapContentInfo eContent field is absent.

Step 3. The MIME entity is inserted into the first part of a
multipart/signed message with no processing other than that
described in Section 3.1.

Step 4. Transfer encoding is applied to the "detached signature" CMS
SignedData object, and it is inserted into a MIME entity of
type application/pkcs7-signature.

Step 5. The MIME entity of the application/pkcs7-signature is
inserted into the second part of the multipart/signed
entity.

The multipart/signed Content-Type has two required parameters: the
protocol parameter and the micalg parameter.

The protocol parameter MUST be "application/pkcs7-signature". Note
that quotation marks are required around the protocol parameter
because MIME requires that the "/" character in the parameter value
MUST be quoted.

Schaad, et al. Standards Track [Page 34]



RFC 8551 S/MIME 4.0 Message Specification April 2019

The micalg parameter allows for one-pass processing when the
signature is being verified. The value of the micalg parameter is
dependent on the message digest algorithm(s) used in the calculation
of the Message Integrity Check. If multiple message digest
algorithms are used, they MUST be separated by commas per [RFC1847].
The values to be placed in the micalg parameter SHOULD be from the
following:

Algorithm Value Used

MD5* md5

SHA-1* sha-1

SHA-224 sha-224

SHA-256 sha-256

SHA-384 sha-384

SHA-512 sha-512

Any other (defined separately in the algorithm profile

or "unknown" if not defined)

*Note: MD5 and SHA-1 are historical and no longer considered secure.
See Appendix B for details.

(Historical note: Some early implementations of S/MIME emitted and
expected "rsa-md5", "rsa-shal", and "shal" for the micalg parameter.)
Receiving agents SHOULD be able to recover gracefully from a micalg
parameter value that they do not recognize. Future values for this
parameter will be taken from the IANA "Hash Function Textual Names"
registry.

Schaad, et al. Standards Track [Page 35]



RFC 8551 S/MIME 4.0 Message Specification April 2019

3.5.3.3. Sample multipart/signed Message

Content-Type: multipart/signed;
micalg=sha-256;
boundary="-—-—-—=_NextBoundary Fri,_06_Sep_2002_00:25:21";
protocol="application/pkcs7-signature"

This is a multipart message in MIME format.
—————— = NextBoundary Fri,_06_Sep_2002_00:25:21

This is some sample content.

—————— =_NextBoundary Fri,_06_Sep_2002_00:25:21
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

MIIBJgYJKoZIhvcNAQcCoIIBFzCCARMCAQExXADALBgkghkiGOwOBBwExgf4w
gfsCAQIwWJJASMRAWDgYDVQQODEwWdDYXJsUINBAhBGNGVHgABWVBHTb1 7EELOW
MASGCWCGSAF1AwQCAaAxXxMC8GCSgGSIb3DQEJIJBDEIBCCxwWpZGNZzTSsugsn+f
1EidzQK4mf/ozKgfmbxhcIkKgjALBgkghkiGOw0OBAQsEgYBOXJV7fjPa5Nuh
oth5msDfP8A5urYUM jhNpWgXG8ae3XpppqVrPi2nVO4lonHnkBy jkeD/we31l
A9WH8MzFQgSTsrJ65JvEfTTXkOpRPxsSHN3wJFwP /atWHkh8YK/ JRObULhUL
Mv5jQEDiwVX5DRasxu6Ld8zvou5/TsdBNiufGw==

—————— =_NextBoundary Fri,_06_Sep_2002_00:25:21--

The content that is digested (the first part of the multipart/signed)
consists of the bytes:

54 68 69 73 20 69 73 20 73 6f 6d 65 20 73 61 6d 70 6C 65 20 63 6f 6e
74 65 6e 74 2e 0d Oa

3.6. Creating a Compressed-Only Message

This section describes the format for compressing a MIME entity.
Please note that versions of S/MIME prior to version 3.1 did not
specify any use of CompressedData and will not recognize it. The use
of a capability to indicate the ability to receive CompressedData is
described in [RFC3274] and is the preferred method for compatibility.

Step 1. The MIME entity to be compressed is prepared according to
Section 3.1.

Step 2. The MIME entity and other required data are processed into a
CMS object of type CompressedData.

Schaad, et al. Standards Track [Page 36]



RFC 8551 S/MIME 4.0 Message Specification April 2019

Step 3. The CompressedData object is wrapped in a CMS ContentInfo
object.

Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.

The smime-type parameter for compressed-only messages is
"compressed-data". The file extension for this type of message
is ".p7z".

A sample message would be:

Content-Type: application/pkcs7-mime; smime-type=compressed-data;
name=smime.p7z

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7z

eNoLycgsVgCi4vzcVIXixNyCnFSF5Py8kt S8EjOAICkKVA==
3.7. Multiple Operations

The signed-only, enveloped-only, and compressed-only MIME formats can
be nested. This works because these formats are all MIME entities
that encapsulate other MIME entities.

An S/MIME implementation MUST be able to receive and process
arbitrarily nested S/MIME within reasonable resource limits of the
recipient computer.

It is possible to apply any of the signing, encrypting, and
compressing operations in any order. It is up to the implementer and
the user to choose. When signing first, the signatories are then
securely obscured by the enveloping. When enveloping first, the
signatories are exposed, but it is possible to verify signatures
without removing the enveloping. This can be useful in an
environment where automatic signature verification is desired, as no
private key material is required to verify a signature.

There are security ramifications related to choosing whether to sign
first or encrypt first. A recipient of a message that is encrypted
and then signed can validate that the encrypted block was unaltered
but cannot determine any relationship between the signer and the
unencrypted contents of the message. A recipient of a message that
is signed and then encrypted can assume that the signed message
itself has not been altered but that a careful attacker could have
changed the unauthenticated portions of the encrypted message.

Schaad, et al. Standards Track [Page 37]



RFC 8551 S/MIME 4.0 Message Specification April 2019

When using compression, keep the following guidelines in mind:

— Compression of encrypted data that is transferred as binary data
is discouraged, since it will not yield significant compression.
Encrypted data that is transferred as base64-encoded data could
benefit as well.

- If a lossy compression algorithm is used with signing, you will
need to compress first, then sign.

3.8. Creating a Certificate Management Message

The certificate management message or MIME entity is used to
transport certificates and/or Certificate Revocation Lists (CRLs),
such as in response to a registration request.

Step 1. The certificates and/or CRLs are made available to the CMS
generating process that creates a CMS object of type
SignedData. The SignedData encapContentInfo eContent field
MUST be absent, and the signerInfos field MUST be empty.

Step 2. The SignedData object is wrapped in a CMS ContentInfo
object.

Step 3. The ContentInfo object is enclosed in an
application/pkcs7-mime MIME entity.

The smime-type parameter for a certificate management message is
"certs-only". The file extension for this type of message is ".p7c".

3.9. Registration Requests

A sending agent that signs messages MUST have a certificate for the
signature so that a receiving agent can verify the signature. There
are many ways of getting certificates, such as through an exchange
with a certification authority, through a hardware token or diskette,
and so on.

S/MIME v2 [SMIMEv2] specified a method for "registering" public keys
with certificate authorities using an application/pkcsl0 body part.
Since that time, the IETF PKIX Working Group has developed other
methods for requesting certificates. However, S/MIME v4.0 does not
require a particular certificate request mechanism.

Schaad, et al. Standards Track [Page 38]



RFC 8551 S/MIME 4.0 Message Specification April 2019

3.10. Identifying an S/MIME Message

Because S/MIME takes into account interoperation in non-MIME
environments, several different mechanisms are employed to carry the
type information, and it becomes a bit difficult to identify S/MIME
messages. The following table lists criteria for determining whether
or not a message is an S/MIME message. A message 1s considered an
S/MIME message if it matches any of the criteria listed below.

The file suffix in the table below comes from the "name" parameter in
the Content-Type header field or the "filename" parameter in the
Content-Disposition header field. The MIME parameters that carry the
file suffix are not listed below.

Media Type Parameters File Suffix
application/pkcs7-mime N/A N/A
multipart/signed protocol= N/A

"application/pkcs7-signature"

application/octet—-stream N/A p7m, pis,
plc, plz

4. Certificate Processing

A receiving agent MUST provide some certificate retrieval mechanism
in order to gain access to certificates for recipients of digital

envelopes. This specification does not cover how S/MIME agents
handle certificates —-—- only what they do after a certificate has been
validated or rejected. S/MIME certificate issues are covered in
[REC5750] .

At a minimum, for initial S/MIME deployment, a user agent could
automatically generate a message to an intended recipient requesting
that recipient’s certificate in a signed return message. Receiving
and sending agents SHOULD also provide a mechanism to allow a user to
"store and protect" certificates for correspondents in such a way as
to guarantee their later retrieval.

Schaad, et al. Standards Track [Page 39]



RFC 8551 S/MIME 4.0 Message Specification April 2019

4.1. Key Pair Generation
All key pairs MUST be generated from a good source of
non-deterministic random input [RFC4086], and the private key MUST be

protected in a secure fashion.

An S/MIME user agent MUST NOT generate asymmetric keys less than
2048 bits for use with an RSA signature algorithm.

For 2048-bit through 4096-bit RSA with SHA-256, see [RFC5754] and
[FIPS186—-4]. The first reference provides the signature algorithm’s

OID, and the second provides the signature algorithm’s definition.

For RSASSA-PSS with SHA-256, see [RFC4056]. For RSAES-OAEP, see
[RFC3560].

4.2. Signature Generation

The following are the requirements for an S/MIME agent when
generating RSA and RSASSA-PSS signatures:

key size <= 2047 : SHOULD NOT (Note 2)
2048 <= key size <= 4096 : SHOULD (Note 1)
4096 < key size : MAY (Note 1)

Note 1: See Security Considerations in Section 6.
Note 2: See Historical Mail Considerations in Appendix B.

Key sizes for ECDSA and EdDSA are fixed by the curve.
4.3. Signature Verification

The following are the requirements for S/MIME receiving agents during
verification of RSA and RSASSA-PSS signatures:

key size <= 2047 : SHOULD NOT (Note 2)
2048 <= key size <= 4096 : MUST (Note 1)
4096 < key size : MAY (Note 1)

Note 1: See Security Considerations in Section 6.
Note 2: See Historical Mail Considerations in Appendix B.

Key sizes for ECDSA and EdDSA are fixed by the curve.

Schaad, et al. Standards Track [Page 40]



RFC 8551 S/MIME 4.0 Message Specification April 2019

4.4. Encryption
The following are the requirements for an S/MIME agent when
establishing keys for content encryption using the RSA and RSA-OAEP

algorithms:

key size <= 2047 : SHOULD NOT (Note 2)

2048 <= key size <= 4096 : SHOULD (Note 1)
4096 < key size : MAY (Note 1)
Note 1: See Security Considerations in Section 6.

Note 2: See Historical Mail Considerations in Appendix B.
Key sizes for ECDH are fixed by the curve.
4.5. Decryption

The following are the requirements for an S/MIME agent when
establishing keys for content decryption using the RSA and RSAES-OAEP

algorithms:

key size <= 2047 : MAY (Note 2)
2048 <= key size <= 4096 : MUST (Note 1)
4096 < key size : MAY (Note 1)

Note 1: See Security Considerations in Section 6.
Note 2: See Historical Mail Considerations in Appendix B.

Key sizes for ECDH are fixed by the curve.

5. IANA Considerations
This section (1) updates the media type registrations for
application/pkcs7-mime and application/pkcs7-signature to refer to
this document as opposed to RFC 5751, (2) adds authEnveloped-data to
the list of values for smime-type, and (3) updates references from

RFC 5751 to this document in general.

Note that other documents can define additional media types for
S/MIME.

Schaad, et al. Standards Track [Page 41]



RFC 8551 S/MIME 4.0 Message Specification April 2019

5.1. Media Type for application/pkcs7-mime
Type name: application
Subtype Name: pkcs7-mime
Required Parameters: NONE

Optional Parameters: smime-type
name

Encoding Considerations: See Section 3 of this document
Security Considerations: See Section 6 of this document
Interoperability Considerations: See Sections 1-6 of this document

Published Specification: RFC 2311, RFC 2633, RFC 5751,
and this document

Applications that use this media type: Security applications
Fragment identifier considerations: N/A
Additional information:

Deprecated alias names for this type: N/A

Magic number(s): N/A

File extensions(s): See Section 3.2.1 of this document

Macintosh file type code(s): N/A

Person & email address to contact for further information:
The IESG <iesg@ietf.org>

Intended usage: COMMON
Restrictions on usage: NONE
Author: Sean Turner

Change Controller: LAMPS working group delegated from the IESG

Schaad, et al. Standards Track [Page 42]



RFC 8551 S/MIME 4.0 Message Specification April 2019

5.2. Media Type for application/pkcs7-signature
Type name: application
Subtype Name: pkcs7-signature
Required Parameters: N/A
Optional Parameters: N/A
Encoding Considerations: See Section 3 of this document
Security Considerations: See Section 6 of this document
Interoperability Considerations: See Sections 1-6 of this document

Published Specification: RFC 2311, RFC 2633, RFC 5751,
and this document

Applications that use this media type: Security applications
Fragment identifier considerations: N/A
Additional information:

Deprecated alias names for this type: N/A

Magic number (s): N/A

File extensions(s): See Section 3.2.1 of this document

Macintosh file type code(s): N/A

Person & email address to contact for further information:
The IESG <iesg@ietf.org>

Intended usage: COMMON
Restrictions on usage: N/A
Author: Sean Turner

Change Controller: LAMPS working group delegated from the IESG

Schaad, et al. Standards Track [Page 43]



RFC 8551 S/MIME 4.0 Message Specification April 2019

5.3. authEnveloped-data smime-type

IANA has registered the following value in the "Parameter Values for
the smime-type Parameter" registry.

smime-type value: authEnveloped-data
Reference: RFC 8551, Section 3.2.2
5.4. Reference Updates

IANA is to update all references to RFC 5751 to this document. Known
registries to be upd