Net wor k Wor ki ng Group J. Rosenberg
Request for Comments: 2733 dynam csof t
Cat egory: Standards Track H. Schul zri nne
Col unbi a University

Decenmber 1999

An RTP Payl oad Format for Generic Forward Error Correction

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1999). Al Rights Reserved.
Abstr act

Thi s docunent specifies a payload fornmat for generic forward error
correction of nedia encapsulated in RTP. It is engineered for FEC

al gorithnms based on the exclusive-or (parity) operation. The payl oad
format allows end systens to transmit using arbitrary block | engths
and parity schenmes. It also allows for the recovery of both the

payl oad and critical RTP header fields. Since FECis sent as a
separate stream it is backwards conpatible wth non-FEC capabl e
hosts, so that receivers which do not wish to inplenent FEC can just
i gnore the extensions.

Tabl e of Contents

1 Introduction e 2
2 Term nol 0gYot 2
3 Basic Qperation 3
4 Parity Codes i e 5
5 RTP Medi a Packet Structure 6
6 FEC Packet Structure 7
6.1 RTP Header of FEC Packets @ ... 7
6.2 FEC Header e 7
7 Protection Operation 9
8 Recovery Procedures iy 10
8.1 RECONSETUCti ON ... 10
8.2 Determ nation of When to Recover 12

Rosenberg & Schul zri nne St andards Track [Page 1]

RFC 2733 CGeneric FEC Decenber 1999

1

9 EXanpl € ... 16
10 Use with Redundant Encodings 17
11 Indicating FEC Usage in SDP 20
11.1 FEC as a Separate Stream 20
11.2 Use with Redundant Encodings 21
11.3 Usage With RTSP e 22
12 Security Considerations 23
13 Acknow edgment s 24
14 Aut hors’ Addresses 24
15 Bi bliography 25
16 Ful I Copyright Statement 26

nt roducti on

The quality of packet voice on the Internet has been nediocre due, in
part, to high packet loss rates. This is especially true on w de-area
connections. Unfortunately, the strict delay requirements of real-

time multinmedia usually elinmnate the possibility of retransm ssions.

It is for this reason that forward error correction (FEC) has been
proposed to conpensate for packet loss in the Internet [1] [2]. In
particular, the use of traditional error correcting codes, such as
parity, Reed-Sol onon, and Hanm ng codes, has attracted attention. To
support these nechani sns, protocol support is required.

Thi s docunent defines a payload format for RTP [3] which allows for
generic forward error correction of real time nedia. In this context,
generic nmeans that the FEC protocol is (1) independent of the nature
of the nmedia being protected, be it audio, video, or otherw se, (2)
flexi ble enough to support a wi de variety of FEC nechani sns, (3)
designed for adaptivity so that the FEC techni que can be nodified
easily without out of band signaling, and (4) supportive of a nunber
of different mechani snms for transporting the FEC packets.

2 Term nol ogy

The following terns are used throughout this docunent:

Medi a Payl oad: is a piece of raw, un-protected user data which
is to be transmitted fromthe sender. The nmedia payload is
pl aced i nside of an RTP packet.

Medi a Header: is the RTP header for the packet containing the
nmedi a payl oad.

Medi a Packet: The conbi nation of a nmedia payl oad and nedi a
header is called a nedia packet.

Rosenberg & Schul zri nne St andards Track [Page 2]

RFC 2733 CGeneric FEC Decenber 1999

FEC Packet: The forward error correction algorithms at the
transmitter take the nedia packets as an input. They output
both the nmedi a packets that they are passed, and new
packets call ed FEC packets. The FEC packets are formatted
according to the rules specified in this docunent.

FEC Header: The FEC header is the header information contained
in an FEC packet.

FEC Payl oad: The FEC payload is the payload in an FEC packet.

Associ ated: An FEC packet is said to be "associated" with one or
nore nedi a packets when those nedi a packets are used to
generate the FEC packet (by use of the exclusive or
operation).

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [4].

3 Basic Qperation

The payl oad format described here is used whenever a participant in
an RTP session would like to protect a nedia streamit is sending
with forward error correction (FEC). The FEC supported by the fornmat
are those codes based on sinple exclusive or (xor) parities. The
sender takes sonme set of packets fromthe nmedia stream and applies
an xor operation across the payl oads. The sender al so applies the xor
operation over conponents of the RTP headers. Based on the procedures
defined here, the result is an RTP packet containing FEC i nformation
Thi s packet can be used at the receiver to recover any one of the
packets used to generate the FEC packet. This docunment does not
mandat e the particular set of nedia packets conbined to generate an
FEC packet (such a set [is] referred to as a code). Use of differing
sets results in a tradeoff between overhead, delay, and
recoverability. Section 4 outlines sone possible conbinations.

The payl oad format contains information that allows the sender to
tell the receiver exactly which nedia packets have been used to
generate the FEC. Specifically, each FEC packet contains a bitmask,
called the offset mask, containing 24 bits. If bit i in the mask is
set to 1, the nedia packet with sequence nunber N + i was used to
generate this FEC packet. N is called the sequence nunber base, and
is sent in the FEC packet as well. The offset nask and payl oad type
are sufficient to signal arbitrary parity based forward error
correction schemes with little overhead.

Rosenberg & Schul zri nne St andards Track [Page 3]

RFC 2733 CGeneric FEC Decenber 1999

Thi s docunent al so describes procedures that allow the receiver to
make use of the FEC without having to know the details of specific
codes. This allows the sender nuch flexibility; it can adapt the code
in use based on network conditions, and be certain the receivers can
still make use of the FEC for recovery.

As the sender generates FEC packets, they are sent to the receivers.
The sender still usually sends the original nedia stream as if there
were no FEC. This allows the nedia streamto still be used by

recei vers who are not FEC capabl e. However, sone FEC codes do not
require the original nmedia to be sent; the FEC streamis sufficient
for recovery. These codes have the drawback that all receivers nust
be FEC capabl e. However, they are supported by this fornat.

The FEC packets are not sent in the same RTP stream as the nedia
packets. They can be sent as a separate stream or as a secondary
codec in the redundant codec payload format [5]. Wen sent as a
separate stream the FEC packets have their own sequence nunber
space. Although the tinestanps for the FEC packets are derived from
the medi a packets, they increnent nonotonically. FEC packet streans
thus work well with any header conpression nmechani sm which requires
fixed deltas between fields in the packet header.

Thi s docunent does not prescribe the definition of "separate
streans", but |eaves this to applications and hi gher |evel protocols
to define. For multicast, the separate stream may be inpl enented by
separate nulticast groups, different ports in the same group, or by a
different SSRC within the same group/port. For unicast, different
ports or different SSRC nmay be used. Each of these approaches has
drawbacks and benefits which depend on the application

At the receiver, the FEC and original nmedia are received. If no nedia
packets are lost, the FEC can be ignored. In the event of |oss, the
FEC packets can be conbined with other nedia and FEC packets that
have been received, resulting in recovery of m ssing nedia packets.
The recovery is exact; the payload is perfectly reconstructed, along
with nost conponents of the header.

RTP packets which contain data formatted according to this

specification (i.e., FEC packets) are signal ed using dynam c RTP
payl oad types.

Rosenberg & Schul zri nne St andards Track [Page 4]

RFC 2733 CGeneric FEC Decenber 1999

4 Parity Codes

For brevity, we define the function f(x,y,..) to be the XOR (parity)
operator applied to the packets x,y,... The output of this function
i s another packet, called the parity packet. For sinplicity, we
assune here that the parity packet is conputed as the bitw se XOR of
the i nput packets. The exact procedure is specified in section 6.

Recovery of data packets using parity codes is acconplished by
generating one or nore parity packets over a group of data packets.
To be effective, the parity packets nust be generated by linearly

i ndependent conbi nati ons of data packets. The particul ar conbination
is called a parity code. One class of codes takes a group of k data
packets, and generates n-k parity packets. There are a | arge nunber
of possible parity codes for a given n,k. The payl oad fornmat does not
mandat e a particul ar code.

For exanple, consider a parity code which generates a single parity
packet over two data packets. |f the original nedia packets are
a,b,c,d, the packets generated by the sender are:

a b c d <-- nedia stream
f(a, b) f(c,d) <-- FEC stream

where tine increases to the right. In this exanple, the error
correction schenme (we use the terms schenme and code interchangeably)

i ntroduces a 50% overhead. But if b is lost, a and f(a,b) can be used
to recover b.

Sonme additional codes are listed below. In each, the original nedia
stream consi sts of packets a,b,c,d and so on

Schene 1

This schene is the simlar to the one in the exanpl e above. However,
i nstead of sending b, followed by f(a,b), f(a,b) is sent before b
Doing this clearly requires additional delay at the sender. However,
if allows sone bursts of two consecutive packet |osses to be
recovered. The packets generated by the sender |ook I|iKke:

a b c d e <-- nedia stream
f(a, b) f(b,c) f(c,d) f(d,e) <-- FEC stream

Rosenberg & Schul zri nne St andards Track [Page 5]

RFC 2733 CGeneric FEC Decenber 1999

Schene 2

It is not strictly necessary for the original nmedia streamto be
transmitted. In this scheme, only FEC packets are transmtted. This
schene allows for recovery of all single packet | osses and sone
consecutive packet |osses, but with slightly |ess overhead than
schene 1. The packets generated by the sender |ook I|iKke:

f(a,b) f(a,c) f(a,b,c) f(c,d) f(c,e) f(c,d,e) <-- FEC stream

Schene 3

This schene requires the receiver to wait an additional four packet
intervals to recover the original nedia packets. However, it can
recover fromone, two or three consecutive packet |osses. The packets
generated by the sender |ook like:

a b c d <-- nedia stream
f(a,b,c) f(a,c,d) f(a,b,d) <-- FEC stream

5 RTP Medi a Packet Structure

The formatting of the nmedia packets is unaffected by FEC. If the FEC
is sent as a separate stream the nedia packets are sent as if there
was no FEC. If the FEC is being sent as a redundant codec, the nedia
packets are sent as the main codec as defined in RFC 2198 [5].

This lends to a very efficient encoding. Wien little (or no) FECis
used, there are nostly nedia packets being sent. This neans that the
overhead (present in FEC packets only) tracks the anpunt of FEC in
use.

Rosenberg & Schul zri nne St andards Track [Page 6]

RFC 2733 CGeneric FEC Decenber 1999

6 FEC Packet Structure

An FEC packet is constructed by placing an FEC header and FEC payl oad
in the RTP payl oad, as shown in Figure 1

B T S S e s e i s S i S S S S S S T S SR S S S i S S S
| RTP Header

B Lt r s i i i o o T s ks S R S
| FEC Header

B s T s s e T o e S T ks et s oot ST S S S o S S 3
| FEC Payl oad

| |

B s S S i i i ks a ks st S S S S S S
Figure 1: FEC Packet Structure
6.1 RTP Header of FEC Packets

The version field is set to 2. The padding bit is conputed via the
protection operation, defined below. The extension bit is also
conmputed via the protection operation. The SSRC value will generally
be the same as the SSRC value of the nmedia streamit protects. It NAY
be different if the FEC streamis being demultiplexed via the SSRC
value. The CC value is conputed via the protection operation. The
CSRC list is never present, independent of the value of the CC field.
The extension is never present, independent of the value of the X
bit. The marker bit is conputed via the protection operation

The sequence nunber has the standard definition: it MJST be one

hi gher than the sequence nunber in the previously transnmitted FEC
packet. The tinmestanp MJST be set to the value of the nedia RTP clock
at the instant the FEC packet is transmtted. This results in the TS
val ue in FEC packets to be nonotonically increasing, independent of

t he FEC schene.

The payl oad type for the FEC packet is determined through dynanic
out of band neans. According to RFC 1889 [3], RTP participants which
cannot recogni ze a payload type nust discard it. This provides
backwards conpatibility. The FEC nechani sns can then be used in a
mul ticast group with m xed FEC-capabl e and FEC-i ncapabl e recei vers.

6.2 FEC Header
This header is 12 bytes. The format of the header is shown in Figure

2, and consists of an SN base field, length recovery field, E field,
PT recovery field, mask field and TS recovery fi el d.

Rosenberg & Schul zri nne St andards Track [Page 7]

RFC 2733 CGeneric FEC Decenber 1999

T T i e i i e T e b s S S SN S
| SN base | ength recovery

i T i i e e e e e e E e e i s i SRR R SR
| E| PT recovery | mask

B T e o i S I i i S S N iy St S I S S
| TS recovery

T e e i i e e S T s . i NI SR S S

Figure 2: Parity Header Format

The length recovery field is used to determ ne the | ength of any
recovered packets. It is conputed via the protection operation
applied to the unsigned network-ordered 16 bit representation of the
suns of the lengths (in bytes) of the nedia payload, CSRC |ist,

ext ensi on and paddi ng of nedia packets associated with this FEC
packet (in other words, the CSRC |ist, extension, and padding, if
present, are "counted" as part of the payload). This allows the FEC
procedure to be applied even when the | engths of the nedia packets
are not identical. For exanple, assune an FEC packet is being
generated by xor’ing two nedia packets together. The length of the
two medi a packets are 3 (0b011) and 5 (0b101) bytes, respectively.
The length recovery field is then encoded as 0b0O11 xor 0b101 = 0b110.

The E bit indicates a header extension. |Inplenentations confornmng to
this version of the specification MIST set this bit to zero.

The PT recovery field is obtained via the protection operation
applied to the payl oad type values of the nedi a packets associ at ed
wi th the FEC packet.

The mask field is 24 bits. If bit i inthe mask is set to 1, then the
medi a packet with sequence nunber N + i is associated with this FEC
packet, where Nis the SN Base field in the FEC packet header. The

| east significant bit corresponds to i=0, and the nost significant to
i =23.

The SN base field MJST be set to the m ni num sequence nunber of those
medi a packets protected by FEC. This allows for the FEC operation to
extend over any string of at nost 24 packets.

The TS recovery field is conputed via the protection operation
applied to the tinestanps of the nedia packets associated with this
FEC packet. This allows the tinestanp to be conpletely recovered.

The payl oad of the FEC packet is the protection operation applied to

the concatenation of the CSRC Iist, RTP extension, nedia payl oad, and
paddi ng of the nedia packets associated with the FEC packet.

Rosenberg & Schul zri nne St andards Track [Page 8]

RFC 2733 CGeneric FEC Decenber 1999

Note that it's possible for the FEC packet to be slightly larger than
the medi a packets it protects (due to the presence of the FEC
header). This could cause difficulties if this results in the FEC
packet exceedi ng the Maxi mum Transni ssion Unit size for the path
along which it is sent.
7 Protection Qperation
The protection operation involves concatenating specific fields from
the RTP header of the nedia packet, appending the payl oad, paddi ng
with zeroes, and then conputing the xor across the resulting bit
strings. The resulting bit string is used to generate the FEC packet.
The foll owi ng procedure MAY be followed for the protection operation
O her procedures MAY be followed, but the end result MJST be
identical to the one described here. For each nedia packet to be
protected, a bit string is generated by concatenating the foll ow ng
fields together in the order specifed:
o Padding Bit (1 bit)
0 Extension Bit (1 bit)
0 CC hits (4 bhits)
o Marker bit (1 bit)
o Payl oad Type (7 bits)
o Tinestanp (32 bits)
0 Unsigned network-ordered 16 bit representation of the sum of
the lengths (in bytes) of the CSRC List, length of the padding,
I ength of the extension, and | ength of the nmedia payl oad (16
bits)
oif CCis nonzero, the CSRC List (variable |ength)
oif Xis 1, the Header Extension (variable |Iength)
o the payl oad (variable |ength)
o Padding, if present (variable |ength)

Note that the Padding Bit (first entry above) forms the nost
significant bit of the bit string.

Rosenberg & Schul zri nne St andards Track [Page 9]

RFC 2733 CGeneric FEC Decenber 1999

If the lengths of the bit strings are not equal, each bit string that
is shorter than the length of the | ongest, MJST be padded to the

I ength of the longest. Any value for the pad may be used. The pad
MUST be added at the end of the bit string.

The parity operation is then applied across the bit strings. The
result is the bit string used to build the FEC packet. Call this the
FEC bit string.

The first (nost significant) bit in the FEC bit string is witten
into the Padding Bit of the FEC packet. The second bit in the FEC bit
string is witten into the Extension bit of the FEC packet. The next
four bits of the FEC bit string are witten into the CC field of the
FEC packet. The next bit of the FEC bit string is witten into the
marker bit of the FEC packet. The next 7 bits of the FEC bit string
are witten into the PT recovery field in the FEC packet header. The
next 32 bits of the FEC bit string are witten into the TS recovery
field in the packet header. The next 16 bits are witten into the

I ength recovery field in the FEC packet header. The renmaining bits
are set to be the payload of the FEC packet.

8 Recovery Procedures

The FEC packets allow end systens to recover fromthe | oss of nedia
packets. Al of the header fields of the m ssing packets, including
CSRC lists, extensions, padding bits, nmarker and payl oad type, are
recoverable. This section describes the procedure for performng
this recovery.

Recovery requires two distinct operations. The first deternines which
packets (media and FEC) nust be conbined in order to recover a

m ssing packet. Once this is done, the second step is to actually
reconstruct the data. The second step MJST be perfornmed as descri bed
bel ow. The first step MAY be based on any al gorithm chosen by the
inmplementer. Different algorithnms result in a tradeoff between
conplexity and the ability to recover nissing packets if at all
possi bl e.

8.1 Reconstruction

Let T be the list of packets (FEC and nedi a) which can be conbined to
recover sone nedi a packet xi. The procedure is as follows:

1. For the nedia packets in T, conpute the bit string as
described in the protection operation of the previous
section.

Rosenberg & Schul zri nne St andards Track [Page 10]

RFC 2733 CGeneric FEC Decenber 1999

2. For the FEC packet in T, conpute the bit string in the sane
fashi on, except use the PT Recovery instead of Payload Type,
TS Recovery instead of Timestanp, and always set the CSRC
list, extension, and padding to null.

3. If any of the bit strings generated fromthe nedi a packets
are shorter than the bit string generated fromthe FEC
packet, pad themto be the same length as the bit string
generated fromthe FEC. The paddi ng MJST be added at the
end of the bit string, and MAY be of any val ue

4, Performthe exclusive or (parity) operation across the bit
strings, resulting in a recovery bit string.

5. Create a new packet with the standard 12 byte RTP header
and no payl oad.

6. Set the version of the new packet to 2.

7. Set the Padding bit in the new packet to the first bit in
the recovery bit string

8. Set the Extension bit in the new packet to the second bit
in the recovery bit string

9. Set the CC field to the next four bits in the recovery bit
string.

10. Set the marker bit in the new packet to the next bit in the
recovery bit string.

11. Set the payload type in the new packet to the next 7 bits
in the recovery bit string

12. Set the SN field in the new packet to xi.

13. Set the TS field in the new packet to the next 32 bits in
the recovery bit string

14. Take the next 16 bits of the recovery bit string. Watever
unsi gned integer this represents (assum ng network-order),
take that many bytes fromthe recovery bit string and
append themto the new packet. This represents the CSRC
list, extension, payload, and padding.

Rosenberg & Schul zri nne St andards Track [Page 11]

RFC 2733 CGeneric FEC Decenber 1999

15. Set the SSRC of the new packet to the SSRC of the nedia
streamit’s protecting.

This procedure will conpletely recover both the header and payl oad of
an RTP packet.

8.2 Determ nation of When to Recover

The previous section discussed how to recover a nmedia packet with
sequence nunmber xi when all of the packets needed to recover it were
avai | abl e. The deci si on about whether to attenpt recovery of sone
medi a packet xi, and how to determine if sufficient data is available
to recover it, is left to the inplenmenter. However, this section
provides a sinple algorithmwhich MAY be used for this purpose.

The algorithmis described belowin C code. The code assunes that
several functions exist. recover_packet () takes the sequence nunber
of a packet, and an FEC packet. Using the FEC packet and data packets
recei ved previously, the data packet with the given sequence nunber
is recovered. add fec to pending |list() adds the given FEC packet to
a linked list of FEC packets which have not yet been used for
recovery. wait_for_packet() waits for a packet, FEC or data, fromthe
networ k. renove_from pending_list() renoves the FEC packet fromthe
pending list. The structure packet contains a boolean variable fec
which is true when the packet is FEC, false if it’'s nedia. Wien its
an FEC packet, the mask and snbase field contain those val ues from
the FEC packet header. When it’'s a nedia packet, the sn variable
contai ns the sequence nunber of the packet. The gl obal array A

i ndi cates whi ch nmedi a packets have been received, and which have not.
It is indexed by the sequence nunber of the packet.

The function fec_recovery inplements the algorithm It waits for
packets, and when it receives an FEC packet, calls recover_with_fec()
to attenpt to use it to recover. If no recovery is possible, the FEC
packet is stored for later attenpts. If the received packet was a
medi a packet, its presence is noted, and any old FEC packets are
checked to see if recovery is now possible. Recovered packets are
treated as if they were received, triggering further attenpts at
recovery.

A real inplementation will need to use a circular buffer instead of
the sinple array (Ain the code) in order to avoid running off the
end of the buffer. In addition, the code bel ow does not attenpt to
free up FEC packets that are old and were never used. Nornally, such
di scarding is done based on tine constraints introduced by the

pl ayout buffer. If an FEC data protects packets whose play tinme has
el apsed, the FEC is no | onger needed.

Rosenberg & Schul zri nne St andards Track [Page 12]

RFC 2733 CGeneric FEC Decenber 1999

typedef struct packet_ s {

BOOLEAN f ec; /* FEC or nmedia */

int sn; /* SN of the packet, for nmedia only */
BOOLEAN nask|[24] ; /* Mask, FEC only */

i nt snbase; /* SN Base, FEC only */

struct packet_s *next;

} packet;

BOOLEAN A[65535] ;
packet *pending_list;

packet *recover_wth_fec(packet *fec_pkt) {
packet *data_pkt;
int pkts_present, [/* nunber of packets fromthe nmask that are
present */
pkts_needed, /* nunber of packets needed is the nunber of ones
in the mask minus 1 */
pkt _to_recover, /* sn of the packet we are recovering */
i

pkts_present = 0;

/* The nunber of packets needed is the nunber of ones in the nmask
m nus 1. The code bel ow i ncrenments pkts_needed by the nunber
of ones in the mask, so we initialize this to -1 so that the
final count is correct */

pkts_needed = -1;

/* Go through all 24 bits in the mask, and check if we have
all but one of the nedia packets */

for(i =0; i < 24; i++) {
/* 1If the packet is here and in the mask, increnent counter */
i f(Ali +f ec_pkt->snbase] && fec_pkt->nmask[i]) pkts_present ++;

/* Count the number of packets needed as well */
i f(fec_pkt->mask[i]) pkts_needed++;

Rosenberg & Schul zri nne St andards Track [Page 13]

RFC 2733 CGeneric FEC Decenber

/* The packet to recover is the one with a bit in the
mask that’s not here yet */
i f('A[i+fec_pkt->snbase] && fec_pkt->mask[i])
pkt _to_recover = i+fec_pkt->snbase;
}

/* If we can recover, do so. Otherw se, return NULL */
i f(pkts_present == pkts_needed) {
dat a_pkt = recover_packet (pkt_to_recover, fec_pkt);

} else {
dat a_pkt = NULL;

}

return(data_pkt);

void fec_recovery() {

packet *p, /* packet received or regenerated */
f ecp, / fec packet frompending list */
pnew, / new packets recovered */
while(1l) {
p = wait_for_packet(); /* get packet from network */
while(p) {

1999

/* if it's an FEC packet, try to recover with it. If we can't,
store it for later potential use. |If we can recover, act as
if the recovered packet is received and try to recover sone
more. Oherwise, if it's a data packet, mark it as received,
and check if we can now recover a data packet with the |ist

of pendi ng FEC packets */

i f(p->fec == TRUE) {
pnew = recover_w th_fec(p);

i f(pnew)
Al pnew >sn] = TRUE;
el se
add_fec_to_pending list(p);

/* W assign pnew to p since the while loop will continue
to recover based on p not being NULL */

Rosenberg & Schul zri nne St andards Track [Page 14]

RFC 2733

CGeneric FEC Decenber 1999

p = pnew,

} else {

/* Mark this data packet as here */
Al p->sn] = TRUE;

free(p);
p = NULL;

/* Go through pending list. Try and recover a packet using

each FEC. If we are successful, add the data packet to
the Iist of received packets, renove the FEC packet from
the pending list, since we've used it, and then try to
recover sonme nore */

for(fecp = pending_list; fecp !'= NULL; fecp = fecp->next) {

pnew = recover_with fec(fecp);

if(pnew {

/* The packet is now here, as we’'ve recovered it */
Al pnew >sn] = TRUE;

/* One FEC packet can only be used once to recover
so renove it fromthe pending list */

renove_fec_from pending_list(fecp);
p = pnew,

br eak;

}

} /*for*/

} /*p->fec was false */

} /* while p*/

} /* while 1 %/

Rosenberg & Schul zri nne St andards Track [Page 15]

RFC 2733 CGeneric FEC Decenber 1999

9 Exanpl e

Consi der 2 nedia packets to be sent, x and y, from SSRC 2. Their
sequence nunbers are 8 and 9, respectively, with tinmestanps of 3 and
5, respectively. Packet x uses payload type 11, and packet y uses
payl oad type 18. Packet x is has 10 bytes of payload, and packet y
11. Packet y has its marker bit set. The RTP headers for packets x
and y are shown in Figures 3 and 4 respectively.

Medi a Packet x

+
+
+

e e TR o
|0 0 0 0 0 0 0 0 0 000O0O0OO0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
B S i i S T i e i s e S

|[O0O0OO0OO0OO0OO0OO0OOOOOOOOOOOOOOOOOOOOOOOTZ1O
e S i i S S i i S N ik S IR SN o

Ver si on:
Paddi ng:
Ext ensi on:
Mar ker :
PTI :

SN:

TS:

SSRC:

NWOFROOON

Fi gure 3: RTP Header for Media Packet X

An FEC packet is generated fromthese two. We assune that payl oad
type 127 is used to indicate an FEC packet. The resulting RTP header
is shown in Figure 5.

The FEC header in the FEC packet is shown in Figure 6.

Rosenberg & Schul zri nne St andards Track [Page 16]

RFC 2733 CGeneric FEC Decenber 1999

11 Use with Redundant Encodi ngs
One can consi der an FEC packet as a "redundant codi ng" of the nedia.

Medi a Packet y

0 1 2 3
01234567890123456789012345678901
s i e S e S T S S S e O i i R S NI S e R S S
|1 0/0]0OJ0O0OO0O01]001001000000000000010012
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S
|[O0O00O0000000000O00O0D0O0DOD0ODODOODOODOOOOOO1012
e i T i i o T R O S O e S T S s it (o (B SR S
|][O0O0O0O000000000O0D0O00O0DO0O0ODODODOD0ODODOODODODOOODOT1IO
s i e S e S T S S S e O i i R S NI S e R S S

Ver si on: 2

Paddi ng: 0

Ext ension: O

Mar ker : 1

PTI : 18

SN 9

TS: 5

SSRC; 2

Fi gure 4: RTP Header for Media Packet Y

Because of this, the payload format for encodi ng of redundant audio
data [5] can be used to carry the FEC data along with the nedia. The
procedure for this is as foll ows.

The FEC operation defined above acts on a stream of RTP nedi a
packets. The streamwhich is operated on is the stream before the
encapsul ati on defined in RFC 2198 [5]. In other words, the nedia
streamto be protected is encapsulated in standard RTP nedi a packets.
The FEC operation above is perfornmed (with one mnor change),
generating a stream of FEC packets. The change to the procedure above
is that if the RTP packets being protected contain an RTP extension
paddi ng, or a CSRC list, these MJST be renoved fromthe packets, and
the CC field, Padding Bit, and Extension but MJST be set to zero,
before the FEC operation is applied. These nodified packets are used
in the procedure above. Note that the sender MJST still send the
original packets (with the CSRC |ist, padding, and extension in tact)
as the primary encoding in RFC 2198. The renoval of these fields only
applies to the protection operation.

Rosenberg & Schul zri nne St andards Track [Page 17]

RFC 2733 CGeneric FEC Decenber 1999

Once the FEC packets have been generated, the nedia payload is
extracted fromthe nedia packets. This payload is used as the prinmary
encodi ng as defined in RFC 2198. Then, the FEC header and payl oad of
the FEC packets is extracted, and treated as a redundant encodi ng.
Addi tional redundant encodi ngs, besides FEC, MAY be added to the
packet as well. These encodings will not be protected by FEC

however.

3
12345678901
i S SN i S

-IO-OI\)

1

01234567829
T i S SR SN o e o o T e S S =
11111110000000000000001
- +- + R e T i i e e e e i 2

00000 0 0000000D0D0D0D0D0O0D0OD0OD0OD0OD0ODODODODODODOD1O01
i S i i S S i i S e O i e i S

0000O0O0O0OO0OO0O0ODODOOODODOOOOOOOOODOOOOOOOT11DO
e S S it S P S S S N i S S

3 4 8
+- e - - +-
| 0l |1
+- +- +-

9
+-
|

+

+
+

0

0 2

+- e -
|1 0/0
+- 4 +-

|

+

|

+

Ver si on: 2
Paddi ng: 0
Extension: O
Mar ker : 1
PTI : 127
SN 1
TS: 5
SSRC: 2

Fi gure 5: RTP Header of FEC for Packets X and Y

The redundant encodi ngs header for the primary codec is set as
defined in RFC 2198. The redundant encodi ngs header for the FEC data
is set as follows. The block PT is set to the dynanic PT associated
with the FEC format. The block length is set to the sumof the

| engths of the FEC header and payl oad. The tinestanp of fset SHOULD be
set to zero. The secondary coder payl oad includes the FEC header and
FEC payl oad.

At the receiver, the primary codec and all secondary codecs are
extracted as separate RTP packets. This is done by copying the
sequence nunmber, SSRC, marker bit, CC field, RTP version, and
extension bit fromthe RTP header of the redundant encodi ngs packet
to the RTP header of each extracted packet. |f the secondary codec
contains FEC, the CC field, Extension Bit, and Padding Bit in the RTP
header of the FEC packet MJUST be set to zero instead. The payl oad
type identifier in the extracted packet is copied fromthe block PT
of the redundant encodi ngs header. The tinmestanp of the extracted
packet is the differenc