INSTALLATION NOTES for OpenBSD/octeon 7.6 What is OpenBSD? ---------------- OpenBSD is a fully functional, multi-platform UN*X-like Operating System based on Berkeley Networking Release 2 (Net/2) and 4.4BSD-Lite. There are several operating systems in this family, but OpenBSD differentiates itself by putting security and correctness first. The OpenBSD team strives to achieve what is called a "secure by default" status. This means that an OpenBSD user should feel safe that their newly installed machine will not be compromised. This "secure by default" goal is achieved by taking a proactive stance on security. Since security flaws are essentially mistakes in design or implement- ation, the OpenBSD team puts as much importance on finding and fixing existing design flaws and implementation bugs as it does writing new code. This means that an OpenBSD system will not only be more secure, but it will be more stable. The source code for all critical system components has been checked for remote-access, local-access, denial- of-service, data destruction, and information-gathering problems. In addition to bug fixing, OpenBSD has integrated strong cryptography into the base system. A fully functional IPsec implementation is provided as well as support for common protocols such as SSL and SSH. Network filtering and monitoring tools such as packet filtering, NAT, and bridging are also standard, as well as several routing services, such as BGP and OSPF. For high performance demands, support for hardware cryptography has also been added to the base system. Because security is often seen as a tradeoff with usability, OpenBSD provides as many security options as possible to allow the user to enjoy secure computing without feeling burdened by it. Because OpenBSD is from Canada, the export of Cryptography pieces (such as OpenSSH and IPsec) to the world is not restricted. (NOTE: OpenBSD can not be re-exported from the US once it has entered the US. Because of this, take care NOT to get the distribution from a mirror server in the US if you are outside of Canada and the US.) A list of software and ideas developed by the OpenBSD project is available on the web at https://www.OpenBSD.org/innovations.html. A comprehensive list of the improvements brought by the 7.6 release is also available at https://www.OpenBSD.org/76.html. OpenBSD/octeon is a port intended to run on MIPS64-based systems that utilize the Cavium OCTEON, OCTEON Plus, OCTEON II, and OCTEON III system on chips. Sources of OpenBSD: ------------------- Please refer to https://www.openbsd.org/ftp.html for all the ways you may acquire OpenBSD. OpenBSD 7.6 Release Contents: ----------------------------- The OpenBSD 7.6 release is organized in the following way. In the .../7.6 directory, for each of the architectures having an OpenBSD 7.6 binary distribution, there is a sub-directory. The octeon-specific portion of the OpenBSD 7.6 release is found in the "octeon" subdirectory of the distribution. That subdirectory is laid out as follows: .../7.6/octeon/ INSTALL.octeon Installation notes; this file. SHA256 Output of the cksum(1) program using the option -a sha256, usable for verification of the correctness of downloaded files. SHA256.sig The above file, signed with the OpenBSD signing key for the 7.6 release, usable for verification of the integrity of the above file, and thus of the downloaded files. *.tgz octeon binary distribution sets; see below. bsd A stock GENERIC octeon kernel which will be installed on your system during the install. bsd.mp A stock GENERIC.MP octeon kernel, with support for multiprocessor machines, which can be used instead of the GENERIC kernel after the install. bsd.rd A compressed RAMDISK kernel; the embedded filesystem contains the installation tools. Used for simple installation from a pre-existing system. install76.img A boot and installation image which contains the base and X sets. An install or upgrade can be done with a USB key without network connectivity. miniroot76.img A miniroot filesystem image to be used if you for some reason can't or don't want to use the ramdisk installation method. boot The OpenBSD/octeon bootloader. The OpenBSD/octeon binary distribution sets contain the binaries which comprise the OpenBSD 7.6 release for octeon systems. There are eight binary distribution sets. The binary distribution sets can be found in the "octeon" subdirectory of the OpenBSD 7.6 distribution tree, and are as follows: base76 The OpenBSD/octeon 7.6 base binary distribution. You MUST install this distribution set. It contains the base OpenBSD utilities that are necessary for the system to run and be minimally functional. This includes parts of the toolchain required to relink a kernel. It includes shared library support, and excludes everything described below. [ 147.8 MB gzipped, 442.9 MB uncompressed ] comp76 The OpenBSD/octeon Compiler tools. All of the tools relating to C and C++ are supported. This set includes the system include files (/usr/include), the compiler toolchain, and the various system libraries (except the shared libraries, which are included as part of the base set). This set also includes the manual pages for all of the utilities it contains, as well as the system call and library manual pages. [ 64.2 MB gzipped, 260.4 MB uncompressed ] game76 This set includes the games and their manual pages. [ 2.7 MB gzipped, 7.2 MB uncompressed ] man76 This set includes all of the manual pages for the binaries and other software contained in the base set. Note that it does not include any of the manual pages that are included in the other sets. [ 7.6 MB gzipped, 29.5 MB uncompressed ] xbase76 This set includes the base X distribution. This includes programs, headers and libraries. [ 47.9 MB gzipped, 172.5 MB uncompressed ] xfont76 This set includes all of the X fonts. [ 22.4 MB gzipped, 34.1 MB uncompressed ] xserv76 This set includes all of the X servers. [ 7.5 MB gzipped, 29.8 MB uncompressed ] xshare76 This set includes all text files equivalent between all architectures. [ 4.4 MB gzipped, 23.8 MB uncompressed ] OpenBSD System Requirements and Supported Devices: -------------------------------------------------- The following machines are targeted by OpenBSD/octeon: D-Link DSR-500 and DSR-500N Netgear ProSecure UTM25 Portwell CAM-0100 Rhino Labs Inc. SDNA Shasta Rhino Labs Inc. SDNA-7130 Ubiquiti Networks EdgeRouter Ubiquiti Networks EdgeRouter 12 Ubiquiti Networks EdgeRouter 4 Ubiquiti Networks EdgeRouter 6P Ubiquiti Networks EdgeRouter Infinity Ubiquiti Networks EdgeRouter LITE Ubiquiti Networks EdgeRouter Lite / PoE Ubiquiti Networks EdgeRouter PRO Ubiquiti Networks EdgeRouter PoE Ubiquiti Networks UniFi Security Gateway Ubiquiti Networks UniFi Security Gateway PRO-4 The onboard CompactFlash on D-Link DSR-500 and DSR-500N is not supported yet. Verifying the OpenBSD Installation Media: ----------------------------------------- OpenBSD installations are able to verify files for the next release. The OpenBSD 7.6 release was signed with the /etc/signify/openbsd-76-base.pub release key. If you have an existing OpenBSD installation, you can run signify(1) to verify the signature and checksum. For example, run the following to verify that the cd76.iso file was distributed by the OpenBSD team: signify -C -p /etc/signify/openbsd-76-base.pub -x SHA256.sig cd76.iso If you are unable to run or compile signify(1), use sha256(1) with the SHA256 file to see if a file was corrupt during the transfer. Getting the OpenBSD System onto Useful Media: --------------------------------------------- Installation is supported from several media types, including: FFS partitions DOS (FAT) partitions EXT2 partitions Remote NFS partition HTTP The steps necessary to prepare the distribution sets for installation depend on which method of installation you choose. Some methods require a bit of setup first that is explained below. The installation allows installing OpenBSD directly from HTTP mirror sites over the internet, however you must consider the speed and reliability of your internet connection for this option. It may save much time and frustration to download the distribution sets to a local server or disk and perform the installation from there, rather than directly from the internet. The variety of options listed may seem confusing, but situations vary widely in terms of what peripherals and what sort of network arrangements a user has, the intent is to provide some way that will be practical. To install OpenBSD using a remote partition, mounted via NFS, you must do the following: NOTE: This method of installation is recommended only for those already familiar with using BSD network configuration and management commands. If you aren't, this documentation should help, but is not intended to be all-encompassing. Place the OpenBSD distribution sets you wish to install into a directory on an NFS server, and make that directory mountable by the machine on which you are installing or upgrading OpenBSD. This will probably require modifying the /etc/exports file of the NFS server and resetting its mount daemon (mountd). (Both of these actions will probably require superuser privileges on the server.) You need to know the numeric IP address of the NFS server, and, if the server is not on a network directly connected to the machine on which you're installing or upgrading OpenBSD, you need to know the numeric IP address of the router closest to the OpenBSD machine. Finally, you need to know the numeric IP address of the OpenBSD machine itself. Once the NFS server is set up properly and you have the information mentioned above, you can proceed to the next step in the installation or upgrade process. If you are upgrading OpenBSD, you also have the option of installing OpenBSD by putting the new distribution sets somewhere in your existing file system, and using them from there. To do that, do the following: Place the distribution sets you wish to upgrade somewhere in your current file system tree. At a bare minimum, you must upgrade the "base" binary distribution, and so must put the "base76" set somewhere in your file system. It is recommended that you upgrade the other sets, as well. Preparing your System for OpenBSD Installation: ----------------------------------------------- By default octeon systems are shipped with a Linux (or proprietary) system installed on the CompactFlash card or USB drive. First connect your computer via serial port to the device (you may need to use a Cisco serial cable depending on your hardware) with a command such as "cu -l cuaU0 -s 115200" (assuming cuaU0 is your serial port device). Now apply power to the device and start it. Unless you have removed or changed the Linux installation it will be booted automatically. If you are quick you can interrupt booting (while still in U-Boot) with ^C. OpenBSD/octeon uses serial speed 115200. If this speed is not the default on the device, you should adjust it by setting the baudrate U-Boot environment variable (you also need to reconnect to the serial port using the new speed): # setenv baudrate 115200 There are several ways to load an OpenBSD/octeon kernel (or ramdisk), over TFTP, from the internal CompactFlash or USB storage. Booting from a CF card or USB: To use the miniroot image you will need another machine to plug the SD card in to. Any machine type will do, as long as it supports SD card storage devices. Under OpenBSD, it will appear as a ``sd'' device, for example sd1. Use the dd(1) utility to copy the miniroot to the hard drive. The command would likely be, under OpenBSD: dd if=miniroot76.img of=/dev/rsd1c On the EdgeRouter Lite, some USB storage devices are not detected immediately after power on: USB: (port 0) scanning bus for devices... USB device not responding, giving up (status=0) 1 USB Devices found scanning bus for storage devices... No device found. Not initialized? In such cases, manually resetting the usb controller may help: Octeon ubnt_e100# usb reset Now load the ramdisk kernel using either of the following commands depending on the medium used. For USB: Octeon ubnt_e100# fatload usb 0 $loadaddr bsd.rd For Compact Flash use: # fatload ide 0:1 ${loadaddr} bsd.rd Booting over the network: For TFTP you will first need to set up a TFTP server as described in diskless(8). Assuming tftpd(8) chroots into /tftpboot, copy bsd.rd into that directory. Power on your OpenBSD/octeon device and from the U-Boot prompt set up networking. In this example it is assumed you have a DHCP server in your network: # dhcp If you don't have a DHCP server, you need to set the ipaddr U-Boot environment variable: # setenv ipaddr <static ip address> Now set the IP address of your TFTP server: # setenv serverip <server ip> The ramdisk kernel needs to be loaded into memory. If you use "0" as the address, the default address location will be used by U-Boot: # tftpboot 0 bsd.rd Using octeth0 device TFTP from server 192.168.178.30; our IP address is 192.168.178.89 Filename 'bsd.rd'. Load address: 0x9f00000 Loading: ######################### done Bytes transferred = 7191474 (6dbbb2 hex), 8617 Kbytes/sec Booting the installation kernel Now the kernel can be booted from the default memory location, with no arguments provided: # bootoctlinux Installing the OpenBSD System: ------------------------------ Installing OpenBSD is a relatively simple process. If you take your time and are careful to read the information presented by the installer, you shouldn't have any trouble. You should now be ready to install OpenBSD. The following is a walk-through of the steps you will take while getting OpenBSD installed on your hard disk. The installation procedure is designed to gather as much information about your system setup as possible at the beginning, so that no human interaction is required as soon as the questions are over. The order of these questions might be quite disconcerting if you are used to other installation procedures, including older OpenBSD versions. If any question has a default answer, it will be displayed in brackets ("[]") after the question. If you wish to stop the installation, you may hit Control-C at any time, but if you do, you'll have to begin the installation process again from scratch. Using Control-Z to suspend the process may be a better option, or at any prompt enter "!" to get a shell, from which "exit" will return you back to that prompt. Once the kernel has loaded, you will be presented with the OpenBSD kernel boot messages which contain information about the hardware that was detected and supported by OpenBSD. After the kernel is done initializing, you will be asked whether you wish to do an "(I)nstall", "(U)pgrade" or an "(A)utoinstall". Enter "I" for a fresh install or "U" to upgrade an existing installation. Enter "A" to start an unattended installation where all of your answers are supplied in a response file (more on that in "Preparing an unattended installation of OpenBSD"). You will next be asked for your terminal type. You should choose the terminal type from amongst those listed. (If your terminal type is xterm, just use vt220). The first question you will be asked is the system hostname. Reply with the name of the system, without any domain part. You will now be given an opportunity to configure the network. The network configuration you enter (if any) can then be used to do the install from another system using HTTP, and will also be the configuration used by the system after the installation is complete. The install program will give you a list of network interfaces you can configure. For each network interface you select to configure, you will be asked for: - the symbolic host name to use (except for the first interface setup, which will reuse the host name entered at the beginning of the installation). - the IPv4 settings: address and netmask. If the IP address should be obtained from a DHCP server, simply enter "dhcp" when asked for the address. - the IPv6 settings (address, prefix length, and default router). You may enter "autoconf" when asked for the address for the interface to configure automatically via router solicitation messages. After all interfaces have been configured, if there have been any IPv4 interfaces set up, you will be asked for the IPv4 default route. This step is skipped if you only have one IPv4 interface setup, and it is configured with DHCP. The install program will also ask you for your DNS domain name, and the domain name servers, unless this information has already been obtained from a DHCP server during interface setup. You will then be asked to enter the initial root password of the system, twice. Although the install program will only check that the two passwords match, you should make sure to use a strong password. As a minimum, the password should be at least eight characters long and a mixture of both lower and uppercase letters, numbers and punctuation characters. You will then be asked whether you want to start sshd(8) by default. You will now be given the possibility to set up a user account on the forthcoming system. This user will be added to the "wheel" group. Enter the desired login name, or "n" if you do not want to add a user account at this point. Valid login names are sequences of digits and lowercase letters, and must start with a lowercase letter. If the login name matches this criteria, and doesn't conflict with any of the administrative user accounts (such as "root", "daemon" or "ftp"), you will be prompted for the user's descriptive name, as well as its password, twice. As for the root password earlier, the install program will only check that the two passwords match, but you should make sure to use a strong password here as well. If you have chosen to set up a user account, and you had chosen to start sshd(8) on boot, you will be asked if you want to allow sshd(8) logins as root. Depending on the installation media you are using, you may now be given the opportunity to configure the time zone your system will use. If the installation program skips this question, do not be alarmed: the time zone will be configured at the end of the installation. The installation program will now tell you which disks it can install on, and ask you which it should use. Reply with the name of your root disk. Disks on OpenBSD/octeon are partitioned using either "MBR" or "GPT" partitioning schemes. You will need to create one disk partition in which the OpenBSD filesystems will be created. The fdisk(8) utility will be invoked to let you edit your MBR partitioning. The current MBR partitions defined will be displayed and you will be allowed to modify them, and add new partitions. The setup will need two partitions, one 'OpenBSD' for the OpenBSD/octeon installation, and one 'MSDOS' for the U-Boot scripts/bootloader. If you use the whole disk option, the install script will create a small 'MSDOS' partition and use the rest of the disk for the OpenBSD installation. After your OpenBSD MBR partition has been set up, the real partition setup can follow. The file system layout is stored in the OpenBSD disk label. Each file system is stored in its own "disk label partition", which is a subdivision of the OpenBSD disk partition you created. In the text below, "partition" refers to these subdivisions. You will be shown a default layout with the recommended file systems. This default layout is based on the disk size. You will be given the choice of accepting the proposed layout, editing it, or creating your own custom layout. These last two choices will invoke the disklabel(8) interactive editor, allowing you to create your desired layout. Within the editor, you will see at least a "c" partition of fstype "unused". This represents the whole disk and cannot be modified. U-Boot partitions defined on the disk will usually show up as partition 'i', 'j' and so on. You must create partition "a" as a native OpenBSD partition, i.e. one with "4.2BSD" as the fstype, to hold the root file system. In addition to partition "a" you should create partition "b" with fstype "swap", and native OpenBSD partitions to hold separate file systems such as /usr, /tmp, /var, and /home. You will need to provide a mount point for all partitions you define. Partitions without mount points, or not of the 4.2BSD fstype, will neither be formatted nor mounted during the installation. For quick help while in the interactive editor, enter "?". The "z" command (which deletes all partitions and starts with a clean label), the "A" command (which performs the automatic partition layout) and the "n" command (to change mount points) are of particular interest. Although the partitions' position and size are written in exact sector values, you do not need a calculator to create your partitions! Human-friendly units can be specified by adding "k", "m" or "g" after any numbers to have them converted to kilobytes, megabytes or gigabytes. Or you may specify a percentage of the disk size using "%" as the suffix. Enter "M" to view the entire manual page (see the info on the "-E" flag). To exit the editor enter "q". After the layout has been saved, new filesystems will be created on all partitions with mount points. This will DESTROY ALL EXISTING DATA on those partitions. After configuring your root disk, the installer will return to the list of available disks to configure. You can choose the other disks to use with OpenBSD in any order, and will get to set up their layout similarly to the root disk above. However, for non-root disks, you will not be proposed a default partition layout. When all your disks are configured, simply hit return at the disk prompt. After these preparatory steps have been completed, you will be able to extract the distribution sets onto your system. There are several install methods supported: HTTP, or a local disk partition. To install via HTTP: To begin an HTTP install you will need the following pieces of information: 1) Proxy server URL if you are using a URL-based HTTP proxy (squid, CERN FTP, Apache 1.2 or higher). You need to define a proxy if you are behind a firewall that blocks outgoing HTTP connections (assuming you have a proxy available to use). 2) The IP address (or hostname if you configured DNS servers earlier in the install) of an HTTP server carrying the OpenBSD 7.6 distribution. The installation program will try to fetch a list of such servers; depending on your network settings, this might fail. If the list could be fetched, it will be displayed, and you can choose an entry from the list (the first entries are expected to be the closest mirrors to your location). 3) The directory holding the distribution sets. Then refer to the section named "installation set selection" below. To install from an NFS mounted directory: When installing from an NFS-mounted directory, you must have completed network configuration above, and also set up the exported file system on the NFS server in advance. First you must identify the IP address of the NFS server to load the distribution from, and the file system the server expects you to mount. The install program will also ask whether or not TCP should be used for transport (the default is UDP). Note that TCP only works with newer NFS servers. You will also have to provide the relative path to the directory on the file system where the distribution sets are located. Note that this path should not be prefixed with a "/". Then refer to the section named "installation set selection" below. To install from a local disk partition: When installing from a local disk partition, you will first have to identify which disk holds the distribution sets. This is normally "octcfN" or "sdN", where N is a number. Next you will have to identify the partition within that disk that holds the distribution; this is a single letter between "a" and "p". You will also have to identify the type of file system residing in the partition identified. Currently, you can install from partitions that have been formatted as the Berkeley fast file system (ffs), Linux (ext2) or MS-DOS. You will also have to provide the relative path to the directory on the file system where the distribution sets are located. Note that this path should not be prefixed with a "/". Then refer to the next section. Installation set selection: A list of available distribution sets found on the given location will be listed. You may individually select distribution sets to install by entering their names or wildcards (e.g. "*.tgz" or "base*|comp*"), or you may enter "all" to select all the sets (which is what most users will want to do). You may also enter "abort" to deselect everything and restart the selection from scratch, or unselect sets by entering their name prefixed with "-" (e.g. "-x*"). It is also possible to enter an arbitrary filename and have it treated as a file set. When you are done selecting distribution sets, enter "done". The files will begin to extract. After the files have been extracted, you will be given the choice to select a new location from which to install distribution sets. If there have been errors extracting the sets from the previous location, or if some sets have been missing, this allows you to select a better source. Also, if the installation program complains that the distribution sets you have been using do not match their recorded checksums, you might want to check your installation source (although this can happen between releases, if a snapshot is being updated on a mirror server with newer files while you are installing). The last thing you might need to configure, if you did not get the chance to earlier, is the time zone your system will be using. For this work properly, it is expected that you have installed at least the "base76" and "bsd" distribution sets. The installation program will then proceed to save the system configuration, create all the device nodes needed by the installed system, and will install bootblocks on the root disk. On multiprocessor systems, if the bsd.mp kernel has been installed, it will be renamed to "bsd", which is the default kernel the boot blocks look for. The single processor kernel, "bsd", will be available as "bsd.sp". Finally, you will be asked whether you would like to install non-free firmware files (which can't be tightly integrated to the OpenBSD system) on first boot, by invoking fw_update(8) on the next boot. U-Boot has to be configured to load the OpenBSD/octeon bootloader. From the U-Boot commandline, make a copy of the current ${bootcmd} so you can restore it later if needed: # setenv old_bootcmd "${bootcmd}" ${bootcmd} is run by U-Boot when ${autoload} is enabled. Now create a new ${bootcmd} which will load an ELF file called 'boot' from the first active FAT partition on the first CF card. The FAT partition has been created by the installer. # setenv bootcmd 'fatload ide 0:1 ${loadaddr} boot;bootoctlinux rootdev=octcf0' # setenv bootdelay 5 # saveenv Saving Environment to Flash... Un-Protected 1 sectors Erasing Flash... . done Erased 1 sectors Writing to Flash... .done Protected 1 sectors # If you have installed onto SD/MMC, SATA or USB, use the following bootcmd instead: fatload <bootdev> 0 ${loadaddr} boot; bootoctlinux rootdev=sd0 Replace ``<bootdev>'' with ``mmc'', ``sata'' or ``usb'' as appropriate. For stable root disk selection, you can use the root disk's disklabel(8) UID (DUID) as the value of the rootdev parameter. On multi-core systems, the numcores parameter enables the secondary CPUs. Use the total number of cores on your system as the value of the parameter. fatload usb 0 ${loadaddr} boot; bootoctlinux rootdev=sd0 numcores=2 On the EdgeRouter Lite, bootcmd may also reset the USB controller for more reliable USB device detection: usb reset; fatload usb 0 ${loadaddr} boot; bootoctlinux rootdev=sd0 numcores=2 On some models, such as ER-6p, unattended boot from a USB disk will fail if U-Boot attempts to verify the MD5 checksum of the file loaded by fatload: reading vmlinux.64.md5 33 bytes read in 303 ms (0 Bytes/s) md5 checksum error. Octeon ubnt_e300(ram)# At this point, the 'bootoctlinux' command can be used to boot manually. The file 'vmlinux.64.md5' can be renamed from the running OpenBSD system. In case of ER-6p, the file 'vmlinux.64.md5' resides on a FAT partition of the internal MMC, which is accessible from OpenBSD via /dev/sd1i: # mount /dev/sd1i /mnt # mv /mnt/vmlinux.64.md5 /mnt/vmlinux.64.md5.unused # reboot Unattended boot should now succeed, even though U-Boot will warn: reading vmlinux.64.md5 ** Unable to read file vmlinux.64.md5 ** Congratulations, you have successfully installed OpenBSD 7.6. When you reboot into OpenBSD, you should log in as "root" at the login prompt. You should create yourself an account, if you skipped this step during installation, and protect it and the "root" account with good passwords. The install program leaves root an initial mail message. We recommend you read it, as it contains answers to basic questions you might have about OpenBSD, such as configuring your system, installing packages, getting more information about OpenBSD, sending in your dmesg output and more. To do this, run mail and then just enter "more 1" to get the first message. You quit mail by entering "q". Some of the files in the OpenBSD 7.6 distribution might need to be tailored for your site. We recommend you run: man afterboot which will tell you about a bunch of the files needing to be reviewed. If you are unfamiliar with UN*X-like system administration, it's recommended that you buy a book that discusses it. Preparing an unattended installation of OpenBSD: ------------------------------------------------ If "(A)utoinstall" is chosen at the install prompt or if the installation system detects that it booted from the network, and isn't interrupted within 5 seconds, it attempts a fully-automatic installation. The installer autoconfigures a DHCP IPv4 address on the network interface the system booted from, or in case of multiple interfaces it will ask which one to use. Upon success, it retrieves a response file via HTTP. If that fails, the installer asks for the response file location, which can be either a URL or a local path, and retrieves the response file from there. The "next-server" DHCP option specifies the hostname part of the URL, as in "http://<next-server>/install.conf". The "filename" DHCP parameter specifies the installer mode, e.g. "auto_install". On architectures where this parameter is used for netbooting, create a symbolic link named "auto_install" pointing to the boot program. The response file contains lines with key/value pairs separated by an equals sign "=", where the key is a non-ambiguous part (up to the question mark) of the installer question, consisting of whitespace separated words. The value is what would have been entered at the interactive prompt. Empty lines and lines beginning with a "#" character are ignored. The installer uses default answers in case of missing answers. Here is a response file example that uses a hashed password (see encrypt(1) for more details) for root and a public ssh key for the user that is created during the installation. System hostname = openbsd Password for root = $2a$14$Z4xRMg8vDpgYH...GVot3ySoj8yby Setup a user = puffy Password for user = ************* Public ssh key for user = ssh-ed25519 AAAAC3NzaC1...g3Aqre puffy@ai What timezone are you in = Europe/Stockholm Location of sets = http HTTP Server = ftp.eu.openbsd.org The "System hostname" key above matches the following full question asked during an interactive installation: System hostname? (short form, e.g. 'foo') While the installation is in progress the installer writes all output to the file /ai.log, which is available as mail on the freshly installed system after the initial reboot. If the installation is successful the system will reboot automatically; otherwise, you will be dropped back into the shell where you can look at the /ai.log file or try again. Upgrading a previously-installed OpenBSD System: ------------------------------------------------ Warning! Upgrades to OpenBSD 7.6 are currently only supported from the immediately previous release. The upgrade process will also work with older releases, but might not execute some migration tasks that would be necessary for a proper upgrade. The best solution, whenever possible, is to backup your data and reinstall from scratch. As a minimum, if the toolchain (the "comp" set) was installed, you should remove all files within /usr/include before attempting to upgrade. To upgrade OpenBSD 7.6 from a previous version, start with the general instructions in the section "Installing OpenBSD". Boot from your usual boot device. When prompted, select the (U)pgrade option rather than the (I)nstall option at the prompt in the install process. You will be presented with a welcome message, and depending on how you are connected to the system, you will be asked to set the terminal type or to choose a keyboard layout. The upgrade script will ask you for the existing root partition, and will use the existing filesystems defined in /etc/fstab to install the new system in. It will also use your existing network parameters. From then, the upgrade procedure is very close to the installation procedure described earlier in this document. However, it is strongly advised that you unpack the etc.tgz and the xetc.tgz files found in /var/sysmerge in a temporary directory and merge changes by hand, or with the help of the sysmerge(8) helper script, since all components of your system may not function correctly until your files in "/etc" are updated. Getting source code for your OpenBSD System: -------------------------------------------- Now that your OpenBSD system is up and running, you probably want to get access to source code so that you can recompile pieces of the system. You can get the pieces over the internet using anonymous CVS, rsync, FTP or HTTP(s). For more information, see: https://www.OpenBSD.org/anoncvs.html https://www.OpenBSD.org/ftp.html Using online OpenBSD documentation: ----------------------------------- Documentation is available if you first install the manual pages distribution set. Traditionally, the UN*X "man pages" (documentation) are denoted by "name(section)". Some examples of this are intro(1), man(1), apropos(1), passwd(1), passwd(5) and afterboot(8). The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8. The "man" command is used to view the documentation on a topic, and is started by entering "man [section] topic". The brackets [] around the section should not be entered, but rather indicate that the section is optional. If you don't ask for a particular section, the topic with the least-numbered section name will be displayed. For instance, after logging in, enter man passwd to read the documentation for passwd(1). To view the documentation for passwd(5), enter man 5 passwd instead. If you are unsure of what man page you are looking for, enter apropos subject-word where "subject-word" is your topic of interest; a list of possibly related man pages will be displayed. Adding third party software - packages and ports: -------------------------------------------------------- As complete as your OpenBSD system is, you may want to add any of several excellent third party software applications. There are several ways to do this. You can: 1) Use the OpenBSD package collection to grab a pre-compiled and tested version of the application for your hardware. 2) Use the OpenBSD ports collection to automatically get any needed source file, apply any required patches, create the application, and install it for you. 3) Obtain the source code and build the application based upon whatever installation procedures are provided with the application. Instructions for installing applications from the various sources using the different installation methods follow. You should also refer to the packages(7) manual page. Installing applications from the ftp.OpenBSD.org package collection: All available packages for your architecture have been placed on ftp.OpenBSD.org in the directory pub/OpenBSD/7.6/packages/mips64/ You may want to peruse this to see what packages are available. The packages are also on the OpenBSD mirror sites. See https://www.OpenBSD.org/ftp.html for a list of current mirror sites. Installation of a package is very easy. 1) become the superuser (root) 2) use the "pkg_add" command to install the software "pkg_add" is smart enough to know how to download the software from the OpenBSD HTTP server. Example: $ su Password: <enter your root password> # pkg_add emacs Installing applications from the OpenBSD ports collection: See https://www.openbsd.org/faq/faq15.html#Ports for current instructions on obtaining and installing OpenBSD ports. You should also refer to the ports(7) manual page. Installing other applications: If an OpenBSD package or port does not exist for an application you're pretty much on your own. The first thing to do is ask <ports@OpenBSD.org> if anyone is working on a port -- there may be one in progress. If no such port exists, you might want to look at the FreeBSD ports or NetBSD pkgsrc for inspiration. If you can't find an existing port, try to make your own and feed it back to OpenBSD. That's how our ports collection grows. Some details can be found in the OpenBSD Porter's Handbook at https://www.openbsd.org/faq/ports/ with more help coming from the mailing list, <ports@OpenBSD.org>. Administrivia: -------------- There are various mailing lists available via the mailing list server at <majordomo@OpenBSD.org>. To get help on using the mailing list server, send mail to that address with an empty body, and it will reply with instructions. More information about the various OpenBSD mailing list and proper netiquette is available at https://www.OpenBSD.org/mail.html To report bugs, use the "sendbug" command shipped with OpenBSD, and fill in as much information about the problem as you can. Good bug reports include lots of details. Additionally, bug reports can be sent by mail to: bugs@OpenBSD.org As a favor, please avoid mailing huge documents or files to the mailing lists. Instead, put the material you would have sent on a web server, then mail the appropriate list about it, or if you'd rather not do that, mail the list saying you'll send the data to those who want it. For more information about reporting bugs, see https://www.OpenBSD.org/report.html